

Final

MARTIN DAIRY MITIGATION SITE

Orange County, NC NCDEQ Contract No. 006831 DMS Project Number 97087 USACE Action ID Number 2016-00874 NCDWR Project Number 2016-0366

Data Collection Period: March - October 2018 Draft Submission Date: November 12, 2018 Final Submission Date: December 10, 2018

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

PREPARED BY:

312 West Millbrook Road, Suite 225 Raleigh, NC 27609

> Jason Lorch jlorch@wildlandseng.com Phone: 919.851.9986

EXECUTIVE SUMMARY

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Martin Dairy Mitigation Project (Site) for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) to restore a total of 2,135 linear feet (LF) of perennial streams in Orange County, NC. The Site is expected to generate 2,135 stream mitigation units (SMUs). All stream lengths were measured along the stream centerline for SMU calculations. The Site is located approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC (Figure 1) in the Neuse River Basin 8-Digit Hydrologic Unit Code (HUC) 03020201. The project is located within a DMS targeted watershed for the Neuse River Basin Hydrologic Unit Code (HUC) 03020201030030 and NC Division of Water Resources (DWR) Subbasin 03-04-01. There are two unnamed tributaries on the Site, Martin Dairy and UT1 with a drainage area of 526 acres. The Site drains to the Eno River which flows to Falls Lake and is classified as water supply waters (WS-IV). The 11.155 acre site is protected with a permanent conservation easement.

The Site is located within the Neuse River Targeted Local Watershed (TLW) as discussed in the 2010 Neuse River Basin Restoration Priorities (RBRP) (Breeding, 2010), which highlights the importance of riparian buffers for stream restoration projects. The Site was an active dairy farm until 2014 when livestock were removed and the site became utilized for hay production.

The project goals established in the mitigation plan (Wildlands, 2017) were completed with careful consideration of goals and objectives that were described in the Neuse River RBRP plan. The project goals established include:

- Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime;
- Improve the stability of stream channels;
- Restore and enhance native floodplain and streambank vegetation;
- Improve instream habitat; and
- Permanently protect the Site from harmful land uses.

The project will contribute to achieving goals for the watershed discussed in the Neuse River RBRP (Breeding, 2010) and provide ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the site; others, such as reduced pollutant and sediment loading have farther reaching effects. In addition, planned projects downstream of this site will promote cumulative project benefits within the watershed.

The Site construction and as-built surveys were completed between June 2017 and January 2018.

Monitoring Year 1 (MY1) assessments and site visits were completed between March and October 2018 to assess the conditions of the project. Overall, the Site has met the required vegetation and stream success criteria for MY1. The overall average stem density for the Site is 491 stems per acre and is therefore on track to meet the MY3 interim requirement of 320 stems per acre. All restored streams are stable and functioning as designed. Hydrologic monitoring stations with crest gages and pressure transducers were installed on the Site to document bankfull events on the restoration reaches. Bankfull and geomorphically significant events were recorded on each restoration reach during the 2018 annual monitoring period, therefor partially fulfilling the Monitoring Year 7 hydrology success criteria.

MARTIN DAIRY MITIGATION SITE

Monitoring Year 1 Annual Report

TABLE OF CONTENTS

Section 1: PR	OJECT OVERVIEW	1-1
1.1 Proj	ect Goals and Objectives	1-1
1.2 Mor	itoring Year 1 Data Assessment	1-2
1.2.1	Vegetative Assessment	1-2
1.2.2	Vegetation Areas of Concern	
1.2.3	Stream Assessment	1-3
1.2.4	Stream Areas of Concern	1-3
1.2.5	Hydrology Assessment	1-3
1.2.6	Maintenance Plan	1-3
	itoring Year 1 Summary	
Section 2: ME	THODOLOGY	2-1
Section 3: RE	FERENCES	3-1

APPENDICES

Appendix 1	General Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Appendix 2	Visual Assessment Data
Figure 3	Integrated Current Condition Plan View
Table 5a-c	Visual Stream Morphology Stability Assessment Table
Table 6	Vegetation Condition Assessment Table
	Stream Photographs
	Vegetation Photographs
Appendix 3	Vegetation Plot Data
Table 7	Vegetation Plot Criteria Attainment Table
Table 8	CVS Vegetation Tables - Metadata
Table 9	Planted and Total Stem Counts
Appendix 4	Morphological Summary Data and Plots
Table 10a-b	Baseline Stream Data Summary
Table 11	Morphology and Hydraulic Summary (Dimensional Parameters – Cross-Section)
Table 12a-c	Monitoring Data – Stream Reach Data Summary
	Cross-Section Plots
	Reachwide and Cross-Section Pebble Count Plots
Appendix 5	Hydrology Summary Data
Table 13	Verification of Bankfull Events
	Monthly Rainfall Data

Section 1: PROJECT OVERVIEW

The Martin Dairy Mitigation Site (Site) is located in central Orange County, approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC off of Schley Rd (Figure 1). The Site is located in the Neuse River Watershed within the Falls Lake Water Supply Watershed which has been designated a Nutrient Sensitive Water. The project streams drain to the Eno River and eventually into the Falls Lake Reservoir. The Site is within Hydrologic Unit Code (HUC) 03020201030030 and is located within the Neuse River Targeted Local Watershed (TLW) (Figure 1) as identified in the 2010 Neuse River Basin Restoration Priorities (RBRP) (Breeding, 2010). The Site is in in the Carolina Slate Belt of the Piedmont Physiographic Province (USGS, 1998). The project watershed consists primarily of agricultural and wooded land. The drainage area for project site is 526 acres (0.82 square miles).

The project streams consist of Martin Dairy and one unnamed tributary. Stream restoration reaches included Martin Dairy (Reach 1 & 2) and UT1. Mitigation work within the Site included restoration of 2,135 linear feet (LF) of perennial stream channels. The riparian areas were planted with native vegetation to improve habitat and protect water quality. The final mitigation plan was submitted and accepted by the DMS in March 2017(Wildlands, 2017). Construction activities were completed by Land Mechanic Designs, Inc. in July 2017. Planting and seeding activities were completed by Bruton Natural Systems, Inc. in December 2017. Baseline monitoring (MY0) was conducted between August 2017 and January 2017. Annual monitoring will occur for seven years with the close-out anticipated to commence in 2025 given the success criteria are met. Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for the Site.

The Site is located on two tracts under the ownership of Ted H Martin (PIN 9896-83-0483 & 9896-83-9111). A conservation easement was recorded on 11.155 acres of the parcel (Deed Book 6218, Pages 270 - 289). The project is expected to provide 2,135 SMU's by closeout.

A project vicinity map and directions are provided in Figure 1 and project components/assets are illustrated in Figure 2.

1.1 Project Goals and Objectives

Prior to construction activities, the primary degradation at the Site was the clearing of vegetation and channelization of Martin Dairy and UT1. The channelization involved straightening and deepening of the stream (as indicated by the amount of dredge spoil in the floodplain). Livestock grazing on the Site contributed to degradation of the riparian corridor and stream channel. Table 4 in Appendix 1 and Tables 10a through 10b in Appendix 4 present the pre-restoration conditions in detail.

The project is intended to provide numerous ecological benefits within the Neuse River Basin. While benefits such as habitat improvement and geomorphic stability are limited to the project site, others, such as reduced pollutant and sediment loading have farther reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals were established and completed with careful consideration of goals and objectives that were described in the RBRP and to meet the DMS mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The project goals established in the mitigation plan (Wildlands, 2017) are described in Table 1:

Goal	Objective	Expected Outcomes
Reconnect channels with floodplains and riparian wetlands to allow a natural flooding regime.	Reconstruct stream channels with designed bankfull dimensions and depth based on reference reach data. Remove existing dredge spoil to reconnect channel with adjacent wetlands.	Raise water table and hydrate riparian wetlands. Allow more frequent flood flows to disperse on the floodplain. Support geomorphology and higher level functions.
Improve the stability of stream channels.	Construct stream channels that will maintain stable cross- sections, patterns, and profiles over time.	Reduce sediment inputs from bank erosion. Reduce shear stress on channel boundary. Support all stream functions above hydrology.
Restore and enhance native floodplain and streambank vegetation.	Plant native tree and understory species in riparian zones and plant native shrub and herbaceous species on streambanks.	Reduce sediment inputs from bank erosion and runoff. Increase nutrient cycling and storage in floodplain. Provide riparian habitat. Add a source of LWD and organic material to stream. Support all stream functions.
Improve instream habitat.	Install habitat features such as constructed riffles, lunker logs, and brush toes into restored streams. Add woody materials to channel beds. Construct pools of varying depth.	Increase and diversify available habitats for macroinvertebrates, fish, and amphibians leading to colonization and increase in biodiversity over time. Add complexity including LWD to the streams.
Permanently protect the Site from harmful uses.	Establish conservation easements on the Site.	Protect Site from encroachment on the riparian corridor and direct impact to streams and wetlands. Support all stream functions.

 Table 1: Mitigation Goals and Objectives – Martin Dairy Mitigation Site

1.2 Monitoring Year 1 Data Assessment

Site visits were conducted during MY1 to assess the condition of the project. The vegetation and stream success criteria for the Site follows the approved success criteria presented in the mitigation plan.

1.2.1 Vegetative Assessment

Planted woody vegetation is being monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008). A total of eight standard 10-meter by 10-meter vegetation plots were established during the baseline monitoring within the project easement area.

The final vegetative success criteria will be the survival of 210 planted stems per acre at the end of the seven-year monitoring period (MY7). The interim measure of vegetative success will be the survival of at least 320 planted stems per acre at the end of year three of the monitoring period (MY3) and at least 260 stems per acre at the end of the fifth year of monitoring (MY5). Planted vegetation must average 10 feet in height at the end of the seventh year of monitoring.

The MY1 vegetative survey was completed in September 2018. The 2018 vegetation monitoring resulted in an average stem density of 491 stems per acre, which is well above the interim requirement of 320 stems/acre required at MY3 and approximately 18% less than the baseline density recorded (597 stems/acre). There is an average of 12 stems per plot as compared to 14 stems per plot in MY0. All eight of the plots are on track to meet the success criteria required for MY7.Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

1.2.2 Vegetation Areas of Concern

No vegetation areas of concern were identified during MY1.

1.2.3 Stream Assessment

Morphological surveys for MY1 were conducted in June 2018. All streams within the Site are stable. In general, cross-sections at the Site show little to no change in the bankfull area, maximum depth ratio, or width-to-depth ratio. Bank height ratios fall within the appropriate Rosgen stream type parameters. Substrate materials indicate the maintenance of coarser materials in the riffle reaches and finer particles in the pools. Longitudinal profile surveys are not required on the project unless visual inspection indicates reach wide vertical instability. Refer to Appendix 2 for the visual stability assessment table, Current Condition Plan View (CCPV) map, and stream photographs. Refer to Appendix 4 for the morphological data and plots.

After Hurricane Florence, the Site was walked on September 19, 2018. Debris was assessed on the floodplain but no damage occurred at the Site.

1.2.4 Stream Areas of Concern

No stream areas of concern were identified during MY1.

1.2.5 Hydrology Assessment

At the end of the seven-year monitoring period, two or more bankfull events must have occurred in separate years within the restoration reaches. Also, two geomorphically significant events must be documented during the monitoring period as well. Bankfull events and multiple geomorphically significant events were recorded on all restoration reaches during MY1 resulting in partial attainment of the stream hydrology assessment criteria. Refer to Appendix 5 for hydrologic data.

1.2.6 Maintenance Plan

No maintenance plan is necessary at this time.

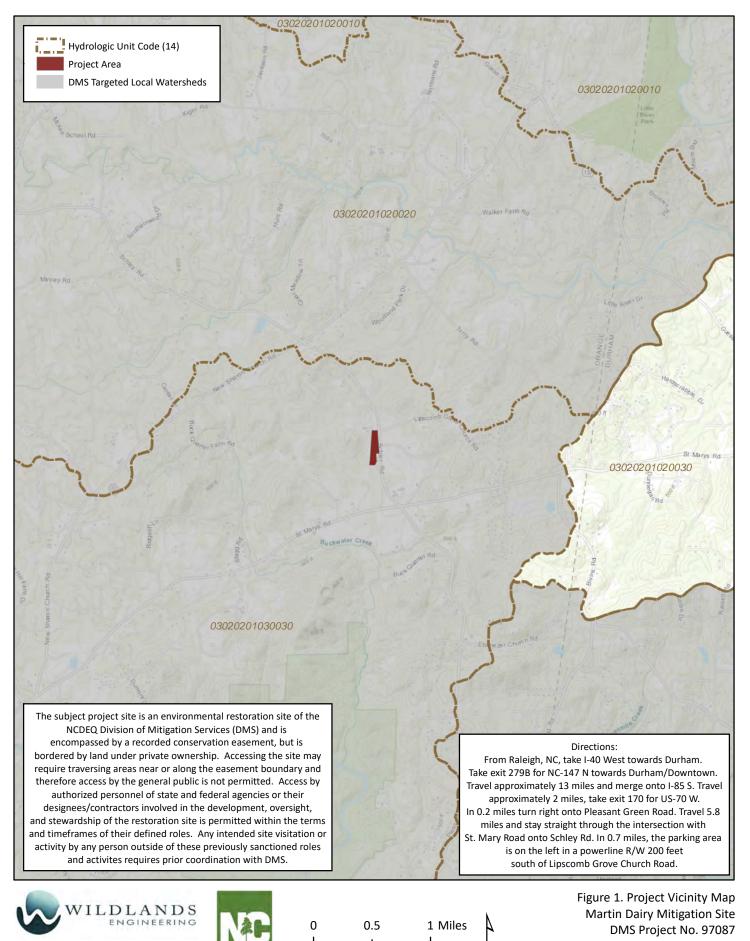
1.3 Monitoring Year 1 Summary

All vegetation plots are on track to meet the MY3 interim requirement of 320 planted stems per acre. All streams within the Site are stable and functioning as designed. Bankfull and geomorphically significant events have been documented on all stream reaches at the Site, resulting in partial fulfillment of the hydrologic success criteria.

Summary information and data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices are available from DMS upon request.

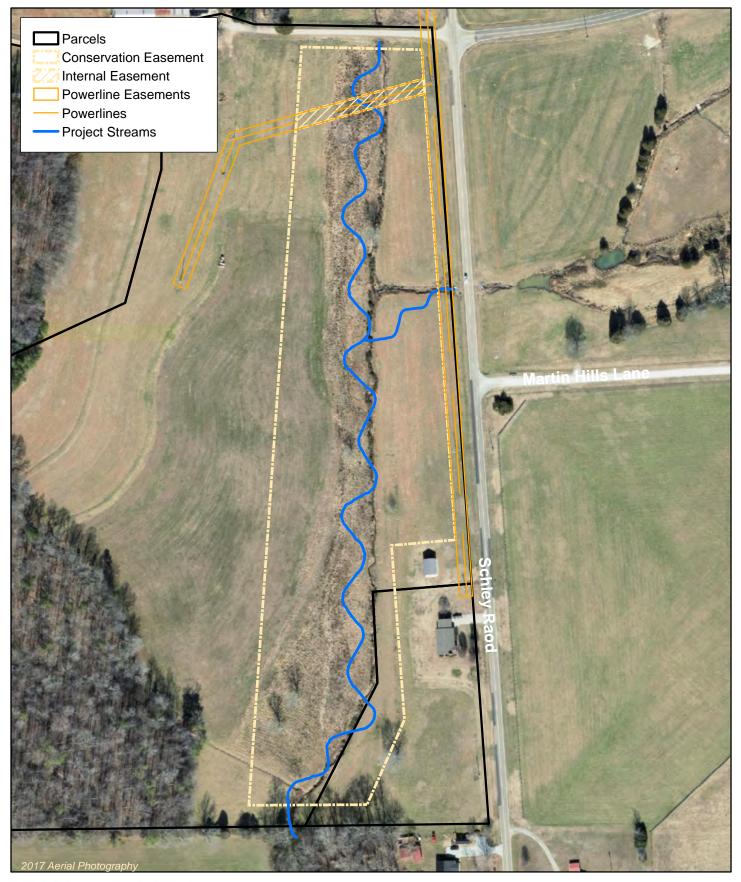
Section 2: METHODOLOGY

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). All Integrated Current Condition Mapping was recorded using a Trimble handheld GPS with sub-meter accuracy and processed using Pathfinder and ArcGIS. Crest gages and pressure transducers were installed in surveyed riffle cross-sections and monitored throughout the year. Hydrologic monitoring instrument installation and monitoring methods are in accordance with the United States Army Corps of Engineers (USACE, 2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2008).


Section 3: REFERENCES

Breeding, R. 2010. Neuse River Basin Restoration Priorities 2010. NCEEP, NC

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, C.C., Rawlins, C.L., Potyondy, J.P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from <u>http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf</u>.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- United States Army Corps of Engineers. 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey. 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Wildlands Engineering, Inc. 2018. Martin Dairy Mitigation Site Baseline Monitoring Document and As-Built Baseline Report. DMS, Raleigh, NC.
- Wildlands Engineering, Inc. 2017. Martin Diary Mitigation Project Mitigation Plan. DMS, Raleigh, NC.



APPENDIX 1. General Figures and Tables

Monitoring Year 1 - 2018

Ń

0	100	200 Feet
	1 1	

Ŵ

Figure 2. Project Component/Asset Map Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018 Orange County, NC Table 1. Project Components and Mitigation Credits Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

				M	TIGATION CRED	ITS								
	Str	eam	Riparian Wetland Non-Riparian		Non-Riparian Wetland Buffer		Nitrogen Nutrient Offset	Phosphorous I	Nutrient Offset					
ype	R	RE	R	RE	R	RE								
otals	2,135	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N	/A				
PROJECT COMPONENTS														
R	each ID	Centerline Stationing	Existing Footage	Approach	Restoration or Restoration Equivalent		Restoration Footage (LF)*	As-Built Thalweg Footage (LF)	Mitigation Ratio	Credits (SMU / WMU)				
		-			STREAMS									
Mart	tin Dairy R1 100+13 - 101+38, 101+78 - 107+61 503 P1		lartin Dairy R1 S03 P1 Restoration		ration	708	721	1	708					
Mart	in Dairy R2	107+61 - 119+71	1,173	P1	Restoration		1,210	1,258	1	1,210				
	UT1	200+33 - 202+50	138	PII	Restoration		Restoration		Restoration		217	214	1	217

COMPONENT SUMMATION										
Stream (LF)	Riparian Wetland (acres)		Non-Riparian Wetland (acres)	Buffer (acres)	Upland (acres)					
	Riverine	Non-Riverine								
2,135	-	-	-	-	-					
	-	-	-	-	-					
-										
-										
	-	-	-							
-	-	-	-		-					
-	-	-	-		-					
	2,135	Stream (LF) Riperian We Riverine Riverine 2,135 - - - - - - - - - - - - - - - - - - -	Stream (LF) Riparian Wetland (acres) Riverine Non-Riverine 2,135 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Stream (LF) Riparian Wetland (acres) Non-Riparian Wetland (acres) Riverine Non-Riverine 2,135 - - 2,135 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Stream (LF) Riparian Wetland (acres) Non-Riparian Wetland (acres) Buffer (acres) Riverine Non-Riverine 2,135 - - - - 2,135 - - - - 1 - - - - - 2,135 - - -					

N/A: not applicable

*Linear footage calculated along stream centerline.

Table 2. Project Activity and Reporting HistoryMartin Dairy Mitigation SiteDMS Project No. 97087Monitoring Year 1 - 2018

Activity or Report		Data Collection Complete	Completion or Scheduled Delivery
Mitigation Plan		March 2017	March 2017
Final Design - Construction Plans		March 2017	March 2017
Construction		June 2017 - July 2017	July 2017
Temporary S&E mix applied to entire project area 1		June 2017 - July 2017	July 2017
Permanent seed mix applied to reach/segments ¹		June 2017 - July 2017	July 2017
Bare root and live stake plantings for reach/segments		December 2017	December 2017
Baseline Monitoring Document (Year 0)	Stream Survey	August 2017	January 2018
Baseline Monitoring Document (rear 0)	Vegetation Survey	January 2018	January 2018
Vers 1 Meriteria	Stream Survey	June 2018	December 2018
Year 1 Monitoring	Vegetation Survey	September 2018	December 2018
Voor 2 Monitoring	Stream Survey	2019	December 2019
Year 2 Monitoring	Vegetation Survey	2019	December 2019
Veen 2 Meniterian	Stream Survey	2020	December 2020
Year 3 Monitoring	Vegetation Survey	2020	December 2020
Voor 4 Monitoring	Stream Survey	2021	December 2021
Year 4 Monitoring	Vegetation Survey	2021	December 2021
Vers E Mersiteria	Stream Survey	2022	December 2022
Year 5 Monitoring	Vegetation Survey	2022	December 2022
Voor 6 Monitoring	Stream Survey	2023	December 2023
Year 6 Monitoring	Vegetation Survey	2023	December 2023
Veer 7 Merikering	Stream Survey	2024	December 2024
Year 7 Monitoring	Vegetation Survey	2024	December 2024

¹Seed and mulch is added as each section of construction is completed.

Table 3. Project Contact Table

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

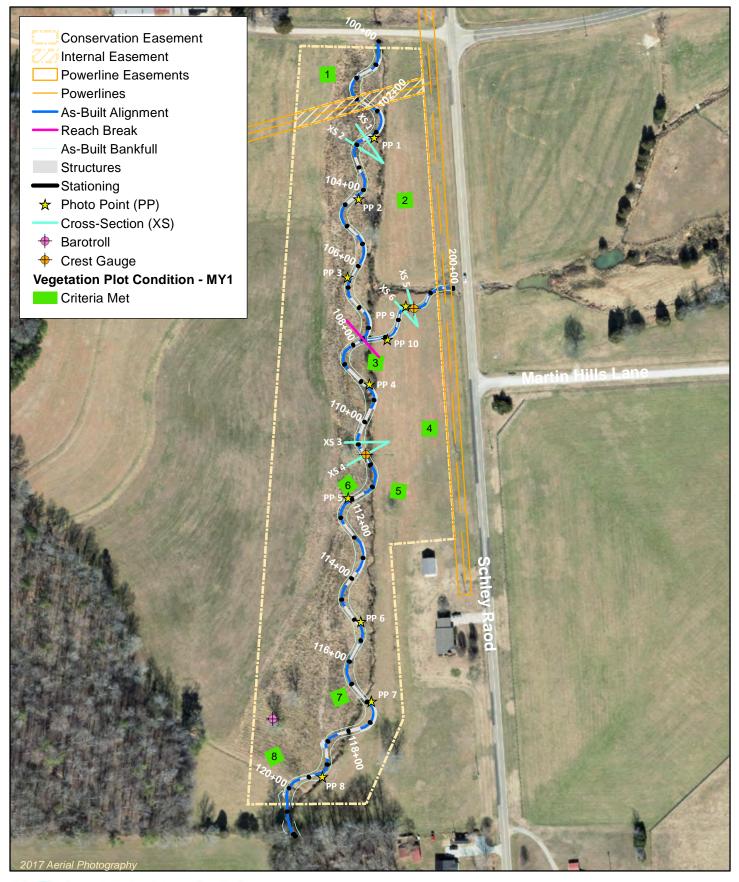

	Wildlands Engineering, Inc.
Designer	312 West Millbrook Road, Suite 225
Angela Allen, PE	Raleigh, NC 27609
	919.851.9986
	Land Mechanic Designs, Inc.
Construction Contractor	126 Circle G Lane
	Willow Spring, NC 27592
	Bruton Natural Systems, Inc
Planting Contractor	P.O. Box 1197
	Fremont, NC 27830
	Land Mechanic Designs, Inc.
Seeding Contractor	126 Circle G Lane
	Willow Spring, NC 27592
Seed Mix Sources	Green Resource, LLC
Nursery Stock Suppliers	Dykes and Sons Nursery and Greenhouse
Bare Roots	bykes and sons hursery and Greenhouse
Live Stakes	Bruton Natural Systems, Inc
Monitoring Performers	Wildlands Engineering, Inc.
Monitoring, POC	Jason Lorch
	919.851.9986

Table 4. Project Information and Attributes

Martin Dairy Mitigation Site DMS Project No. 97087 **Monitoring Year 1 - 2018**

	PROJECT	INFORMATI	ON						
Project Name	Martin Dairy M	litigation Site							
County		Orange County							
Project Area (acres)	11.155								
Project Coordinates (latitude and longitude)	36° 7′ 25.76″ N	l, 79° 0′ 14.26″	W						
		,	INFORMATION						
Physiographic Province	-		dmont Physiographic Pro	Nince					
River Basin	Neuse River								
USGS Hydrologic Unit 8-digit	03020201								
USGS Hydrologic Unit 14-digit	030202010300	130							
DWR Sub-basin	03-04-01								
Project Drainiage Area (acres)	526								
Project Drainage Area (acres) Project Drainage Area Percentage of Impervious Area	0.4%								
CGIA Land Use Classification			tod 0.4% imporviour						
			ated, 0.4% impervious						
ĸ	EACH SUMM		WATION						
Parameters		Martin D	airy	UT1					
Length of Reach (linear feet) - Post-Restoration		1,918	}	217					
Drainage Area (acres)		526		141					
NCDWR Stream Identification Score		36.75		30.75					
NCDWR Water Quality Classification			W	S-IV					
Morphological Desription (stream type)		Perenni	ial	Perennial					
Evolutionary Trend (Simon's Model) - Pre-Restoration			IV: Degradatio	n and Widening					
Underlying Mapped Soils				n silt loam, Tatum silt loam					
Drainage Class		-	,	-					
Soil Hydric Status		-		-					
Slope		-		-					
FEMA Classification			Ν	I/A					
Native Vegetation Community				tomland Forest					
Percent Composition Exotic Invasive Vegetation - Post-Restoration				D%					
	REGULATORY								
Regulation	Applicable?	Resolved?		Supporting Documentation					
Waters of the United States - Section 404	Yes	Yes	LISACE Nationwide Pe	ermit No. 27 and DWQ 401 Water Quality Certification					
Waters of the United States - Section 401	Yes	Yes	OSACE Mationwale re	No. 4087.					
Division of Land Quality (Dam Safety)	N/A	N/A		N/A					
	N/A	N/A		,					
Endangered Species Act	Yes	Yes	Martin Diary Mitigation Plan; Wildlands determined "no effect" on Orange County listed endangered species. The USFWS responded on June 3, 2016 a concurred with NCWRC stating that "the proposed action is not likely to adversely affect any federally-listed endangered or threatened species, the formally designated critical habitat, or species currently proposed for listin under the Act."						
Historic Preservation Act	Yes	Yes		SHPO on June 3, 2016 indicating they were not aware esources that would be affected by the project.					
Coastal Zone Management Act (CZMA)/Coastal Area Management Act (CAMA)	N/A	N/A		N/A					
FEMA Floodplain Compliance	N/A	N/A		N/A					
Essential Fisheries Habitat	N/A	N/A		N/A					
			l						

APPENDIX 2. Visual Assessment Data

0	100	200 Feet

Figure 3. Intergrated Current Condition Plan View Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018 Orange County, NC

Table 5a. Visual Stream Morphology Stability Assessment TableMartin Dairy Mitigation ProjectDMS Project No. 97087Monitoring Year 1 - 2018

			Number		Number of	Amount of	% Stable,	Number with	Footage with	Adjust % for
Major Channel Category	Channel Sub-Category	Metric	Stable, Performing as Intended	Total Number in As-Built	Unstable Segments	Unstable Footage	Performing as Intended	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	8	8			100%			
	3. Meander Pool	Depth Sufficient	9	9			100%			
	Condition	Length Appropriate	9	9			100%			
		Thalweg centering at upstream of meander bend (Run)	8	8			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	9	9			100%			
2. Bank										
	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse.			0	0	100%	n/a	n/a	n/a
3. Engineered	T		1	Totals	0	0	100%	n/a	n/a	n/a
Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	5	5			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	5	5			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	6	6			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 5b. Visual Stream Morphology Stability Assessment Table Martin Dairy Mitigation Project DMS Project No. 97087

Monitoring Year 1 - 2018

Martin Dairy Read Major Channel Category	h 2 Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjust % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	13	13			100%			
	3. Meander Pool	Depth Sufficient	13	13			100%			
	Condition	Length Appropriate	13	13			100%			
	4. Thalweg Position	Thalweg centering at upstream of meander bend (Run) Thalweg centering at downstream of	13	13			100%			
		meander bend (Glide)	13	13			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
3. Engineered			[Totals	0	0	100%	n/a	n/a	n/a
Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth 2 1.6 Rootwads/logs providing some cover at baseflow.	4	4			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table Sc. Visual Stream Morphology Stability Assessment Table Martin Dairy Mitigation Project DMS Project No. 97087 Monitoring Year 1 - 2018 Monitoring Year 1 - 2018

UT1			Number					Number with	Footage with	Adjust % for
Major Channel Category	Channel Sub-Category	Metric	Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation	Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability	Aggradation			0	0	100%			
	(Riffle and Run Units)	Degradation			0	0	100%			
	2. Riffle Condition	Texture/Substrate	4	4			100%			
	3. Meander Pool	Depth Sufficient	4	4			100%			
	Condition	Length Appropriate	4	4			100%			
		Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	4. Thalweg Position	Thalweg centering at downstream of meander bend (Glide)	4	4			100%			
2. Bank	1. Scoured/Eroded	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100%	n/a	n/a	n/a
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	n/a	n/a	n/a
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	n/a	n/a	n/a
3. Engineered				Totals	0	0	100%	n/a	n/a	n/a
Structures ¹	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	1	1			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	1	1			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	1	1			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%.	1	1			100%			
	4. Habitat	Pool forming structures maintaining ~Max Pool Depth : Bankfull Depth ≥ 1.6 Rootwads/logs providing some cover at baseflow.	2	2			100%			

¹Excludes constructed riffles since they are evaluated in section 1.

Table 6. Vegetation Condition Assessment Table

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Planted Acreage	10.139					
Vegetation Category	Definitions	Mapping Threshold (Ac)	Number of Polygons	Combined Acreage	% of Planted Acreage	
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	0	0	0%	
ILOW Stem Density Areas	.ow Stem Density Areas Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.					
		Total	0	0	0%	
Areas of Poor Growth Rates or Vigor	0.25 Ac	0	0	0%		
	Cun	nulative Total	0	0.0	0%	

Easement Acreage

11.155

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Easement Acreage
Invasive Areas of Concern	1,000	0	0	0%	
Easement Encroachment Areas	ement Encroachment Areas Areas of points (if too small to render as polygons at map scale).		0	0	0%

STREAM PHOTOGRAPHS Martin Dairy Reach 1

PHOTO POINT 1 – looking upstream (6/6/2018)

PHOTO POINT 1 – looking downstream (6/6/2018)

PHOTO POINT 2 – looking upstream (6/6/2018)

PHOTO POINT 2 – looking downstream (6/6/2018)

PHOTO POINT 3 – looking upstream (6/6/2018)

PHOTO POINT 3 – looking downstream (6/6/2018)

STREAM PHOTOGRAPHS Martin Dairy Reach 2

PHOTO POINT 4 – looking upstream (6/6/2018)

PHOTO POINT 4 – looking downstream (6/6/2018)

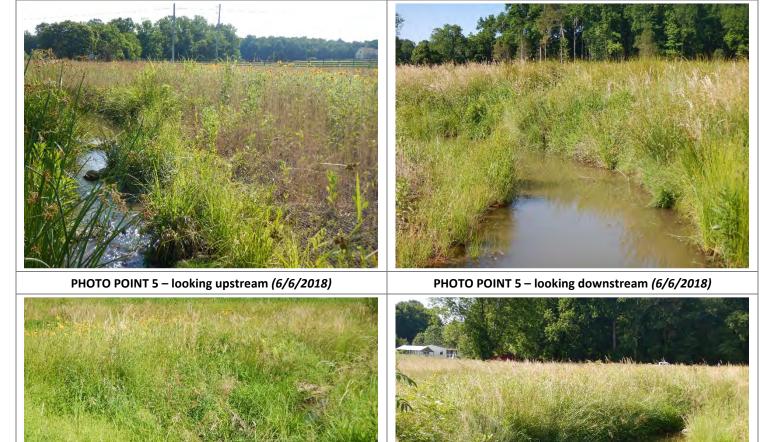


PHOTO POINT 6 – looking upstream (6/6/2018)

PHOTO POINT 8 – looking upstream (6/6/2018)

PHOTO POINT 8 – looking downstream (6/6/2018)

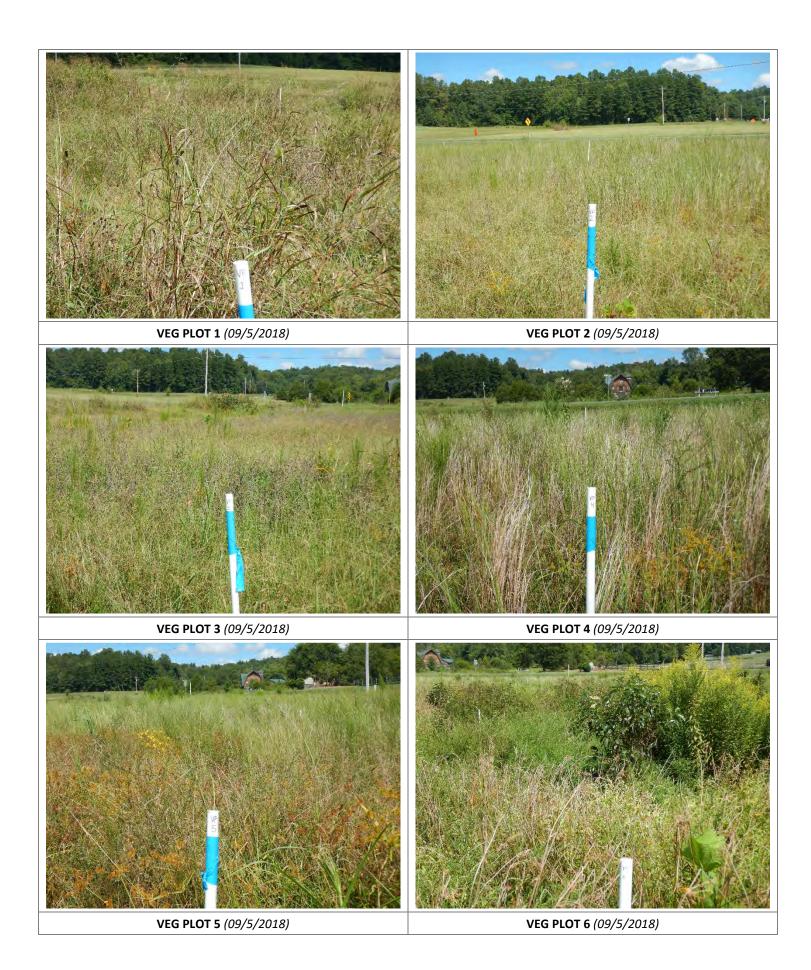

STREAM PHOTOGRAPHS UT1

PHOTO POINT 10 – looking upstream (6/6/2018)

PHOTO POINT 10 – looking downstream (6/6/2018)

VEGETATION PLOT PHOTOGRAPHS

APPENDIX 3. Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment Table

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Plot	MY1 Success Criteria	Tract Mean
1	Y	
2	Y	
3	Y	
4	Y	100%
5	Y	100%
6	Y	
7	Y	
8	Y	

Table 8. CVS Vegetation Tables - Metadata

Martin Dairy Mitigation Project DMS Project No.97087 Monitoring Year 1 - 2018

Depart Dranavad Bu	Tasha King
Report Prepared By	5
Date Prepared	9/25/2018 10:56
Database Name	Martin Dairy- cvs-v2.5.0 MY1.mdb
Database Location	F:\Projects\005-02158 Martin Dairy\Monitoring\Monitoring Year 1\Mitigation\Vegetation Assessment
Computer Name	CAROLYN-PC
File Size	51679232
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Project Planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Project Total Stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and Spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	97087
Project Name	Martin Dairy
Description	Stream Restoration Project
Sampled Plots	8

Table 9. Planted and Total Stem Counts

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

			Current Plot Data (MY1 2018)											
			0970)87-01-	0001	0970)87-01-	0002	097087-01-0003			097087-01-0004		0004
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River Birch	Tree	1	1	1	3	3	3	3	3	3	1	1	1
Cephalanthus occidentalis	Buttonbush	Shrub Tree												
Cercis canadensis	Red Bud	Shrub Tree												
Cornus florida	Flowering Dogwood	Shrub Tree												
Fraxinus pennsylvanica	Green Ash	Tree	3	3	3	3	3	4	2	2	2	3	3	3
Liquidambar styraciflua	Sweet Gum	Tree												2
Liriodendron tulipifera	Tulip Poplar	Tree	3	3	3				1	1	1	1	1	1
Platanus occidentalis	Sycamore	Tree	2	2	2	2	2	2	2	2	2	2	2	2
Quercus palustris	Pin Oak	Tree				2	2	2	5	5	5	3	3	3
Quercus phellos	Willow Oak	Tree	4	4	4	2	2	2	1	1	1	2	2	2
Ulmus	Elm	Tree												
		Stem count	13	13	13	12	12	13	14	14	14	12	12	14
		size (ares)		1			1			1			1	
size (ACRES)				0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	6	6	6	6	6	7
		Stems per ACRE	526	526	526	486	486	526	567	567	567	486	486	567

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

Table 9. Planted and Total Stem Counts

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

			Current Plot Data (MY1 2018)											
			0970	87-01-	0005	0970	87-01-	0006	0970	087-01-	0007	097087-01-0008		
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River Birch	Tree	3	3	3	2	2	2	1	1	1	2	2	2
Cephalanthus occidentalis	Buttonbush	Shrub Tree						8						
Cercis canadensis	Red Bud	Shrub Tree										1	1	1
Cornus florida	Flowering Dogwood	Shrub Tree	1	1	1	1	1	1						
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1	1	1	1	1	1	2	3	3	13
Liquidambar styraciflua	Sweet Gum	Tree												
Liriodendron tulipifera	Tulip Poplar	Tree							1	1	1	1	1	1
Platanus occidentalis	Sycamore	Tree	4	4	4	4	4	4	5	5	5	3	3	4
Quercus palustris	Pin Oak	Tree	1	1	1	1	1	1	2	2	2	2	2	2
Quercus phellos	Willow Oak	Tree	2	2	2	1	1	1	1	1	1	1	1	1
Ulmus	Elm	Tree									1			
		Stem count	12	12	12	10	10	18	11	11	13	13	13	24
		size (ares)		1			1			1			1	
size (ACRES)				0.02			0.02			0.02			0.02	
		Species count	6	6	6	6	6	7	6	6	7	7	7	7
		Stems per ACRE	486	486	486	405	405	728	445	445	526	526	526	971

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

Table 9. Planted and Total Stem Counts

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

					Annua	Means	5	
			М	Y1 (201	L8)	М	YO (201	8)
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River Birch	Tree	16	16	16	17	17	17
Cephalanthus occidentalis	Buttonbush	Shrub Tree			8			
Cercis canadensis	Red Bud	Shrub Tree	1	1	1	3	3	3
Cornus florida	Flowering Dogwood	Shrub Tree	2	2	2	2	2	2
Fraxinus pennsylvanica	Green Ash	Tree	17	17	29	18	18	18
Liquidambar styraciflua	Sweet Gum	Tree			2			
Liriodendron tulipifera	Tulip Poplar	Tree	7	7	7	19	19	19
Platanus occidentalis	Sycamore	Tree	24	24	25	25	25	25
Quercus palustris	Pin Oak	Tree	16	16	16	20	20	20
Quercus phellos	Willow Oak	Tree	14	14	14	14	14	14
Ulmus	Elm	Tree			1			
		Stem count	97	97	121	118	118	118
		size (ares)		8			8	P
		size (ACRES)		0.20			0.20	
		Species count	8	8	11	8	8	8
		Stems per ACRE	491	491	612	597	597	597

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteers

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

APPENDIX 4. Morphological Summary Data and Plots

Table 10a. Baseline Stream Data Summary Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Martin Dairy

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Martin Dairy																			
Image: Image			PRE-RE	ESTORAT		DITION		RE	FERENCE	REACH D	ATA			DES	IGN			AS-BUILT	r/baseline	
Dimensional Solutional Solutinal Solutional Solutional Solutional Solutional Solutiona	Parameter	Gage					Long	Branch	Spence	r Creek 2	Foust	t Creek						•		
							Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	Dimension and Substrate - Riffle																			
	Bankfull Width (ft)						14.8	18.6	10.7	11.2	18.5	19.4	1	5.0	1	6.2				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
$ \begin{array}{ $	Bankfull Max Depth										-		1.3	1.7						
$ \begin{array}{ $		N/A				-			-									-		
Bank Height Ratio 1.0	· · ·																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																				
Profile	-													-		-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2	.6	11	1.0			-				1	0.6	1	0.6	1	3.1	1	0.2
Bitle slope fifting N/A Image: marked slope fifting ····<	Profile																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Riffle Length (ft)		-		-		-		-		-						12.0	35.9	16.7	51.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Riffle Slope (ft/ft)		-		-		0.0130	0.0120	0.0	0130	0.0150	0.0350	0.0060	0.0180	0.0060	0.0190	0.0039	0.0193	0.0166	0.0266
Piol Max Deptin (II) 2.2 3.3 2.5 2.9 1.3 3.3 1.4 3.6 1.4 2.5 1.1 1.9 Pool Volume (N) 16 91 22 105 105 71 49 105 105 105 113 41 101 155 113 14 105 113 14 105 113 14 105 113 14 105 113 14 105 113 14 105 113 113 155 113 141 105 113 14 105 113 113 155 113 141 105 113 141 105 113 141 105 113 141 105 113 141 105 113 113 137 133 114 147 114 147 114 147 114 147 143 141 105 113 141 160 185 118 50 118 50 118 50 118 50 118 50 118 50 118 50 118 50 118 117 21 120 32 14 146 146		NI/A	-		-		-		-								38.2	77.4	36.1	83.1
Pool Volume (h ²) Image: Channel Beltwidth (ft) Image: Channe		N/A																		
Pattern Image: Channel Beltwicht (ft) Radius of Curvature (ft) Magander Sturwitz (ht) Magander Wicht Radius of Curvature (ft) Magander Stress (Competency) Ib/rt Magander Stress (Competen	Pool Spacing (ft)		16	91	22	108	50	105	7	71	49	91	60	105	65	113	41	101	55	111
Channel Beltvidth (ft) Redius of Curvature (ft) Reclashift Width (ft/ft) MA N/A 15 20 17 28 60 38 41 N/A 36 75 39 81 36 75	Pool Volume (ft ³)																			
Radius of Curvature (rt) N/A 1 32 7 46 16 87 11 15 N/A 27 75 29 81 27 75 29 81 Meander Length (ft) 1.3 3.7 0.5 3.3 1.1 4.7 1.3 1.4 N/A 1.8 5.0 1.2 5.0 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5	Pattern																			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel Beltwidth (ft)	1	15	20	17	28	6	50	38	41	N	I/A	36	75	39	81	36	75	39	81
Meander length (ft) Meander Width Rate 46 74 46 114 60 191 460 48.0 N/A 60 225 65 243 60 225 65 243 60 225 65 243 50 2.4 50 <	Radius of Curvature (ft)		11	32	7	46	16	87	11	15	N	I/A	27	75	29	81	27	75	29	81
Meander Width Ratio 1.7 2.3 1.2 2.0 3.2 4.1 3.4 3.6 N/A 2.4 5.0 2.4 5.0 2.4 5.0 2.4 5.0 Substrate, Bed and Trasport Parameter Ritigking/MCM_GM_GM_GM_GM_GM_GM_GM_GM_GM_GM_GM_GM_GM	Rc:Bankfull Width (ft/ft)	N/A	1.3	3.7	0.5	3.3	1.1	4.7	1.3	1.4	N	I/A	1.8	5.0	1.8	5.0	1.8	5.0	1.8	5.0
Substrate, Bed and Transport Parameters Ri%/Ru%/P%/C%/S% SC%/Sa%/G%/C%/B%/S%/C%/C%/B%/C%/C%/B%/S%/C%/C%/B%/C%/C%/B%/S%/C%/C%/B%/S%/C%/C%/B%/C%/C%/C%/B%/S%/C%/C%/B%/S%/C%/C%/C%/B%/S%/C%/C%/C%/B%/C%/C%/C%/D%/S%/C%/C%/C%/C%/C%/D%/S%/C%/C%/C%/C%/C%/C%/C%/C%/C%/C%/C%/C%/C%	Meander Length (ft)		46	74	46	114	66.0	191	46.0	48.0	N	I/A	60	225	65	243	60	225	65	243
NK/Ru%/P%/G%/S% SC%/Sa%/G%/C%/B%/Be% d16/d35/d50/d8/d95/d100 N/A 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.0/5.0/27.6/ N/A 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.0/5.0/27.6/ 0.0063/3.8.8/42/ 0.11/1.0/5.0/27.6/ 64.0/512.0 N/A 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.0/5.0/27.6/ 0.0063/3.8.8/42/ 0.12 0.13/1.3/2.6/c.6/7 0.11/1.10/5.0/27.6/ Max part size (nm) mobilized at bankful 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.10/5.0/27.6/ 64.0/512.0 Max part size (nm) mobilized at bankful 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.10/5.0/27.6/ 64.0/512.0 Additional Reach Parameters 0.13/1.3/2.6/c.6/7 2.4/8.1/11/15/33/ 0.11/1.10/5.0/27.6/ 64.0/512.0 Max persise (Capacity W/m ²) 0.54 0.82 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.44 0.45 0.82 0.54 0.82 0.54 0.82 0.44 0.4%	Meander Width Ratio		1.7	2.3	1.2	2.0	3.2	4.1	3.4	3.6	N	I/A	2.4	5.0	2.4	5.0	2.4	5.0	2.4	5.0
SCX/Sa%/G%/C%/B%/B%/ Image for the set of the se	Substrate, Bed and Transport Parameters																			
SCX/Sa%/G%/C%/B%/B%/ Image for the set of the se	Ri%/Ru%/P%/G%/S%				1						[1		1	
d16/d35/d50/d84/d95/d100 N/A 0.13/1.3/2.6/4.6/7 2.4/8.1/11/15/33/ 3/777/-/ SC/0.45/2.8/21.8/ 90/- 0.11/1.10/5.0/27.6/ 45.0/128.0 0.11/1.10/5.0/27.6/ 64.0/512.0 Reach Shear Stress (Competency) lb/ft ² 0.33 0.41 90/- 45.0/128.0 64.0/512.0 Stream Power (Capacity) W/m ² 0.25 0.38 0.23 0.49 Additional Reach Parameters Matershed Impervious Cover Estimate (%) 0.54 0.82 1.49 0.96 1.38 0.54 0.82 0.54 0.82 Watershed Impervious Cover Estimate (%) 0.4% 0.																				
NA			0.13/1.3/	2.6/4.6/7	2.4/8.1/1	1/15/33/					<0.063/3	3/8.8/42/					SC/0.45	/2.8/21.8/	0.11/1.10	/5.0/27.6/
Max part size (mm) mobilized at bankull Stream Power (Capacity) W/m ² Image: Capacity (Capacity) W/m ² <	d16/d35/d50/d84/d95/d100	N/A	.7/7	7/-/-	54	/-/-	-		-		9	0/-					45.0	/128.0	64.0,	/512.0
Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m ² Image Area (SM)	Reach Shear Stress (Competency) lb/ft ²		0.	33	0.	41							0	.25	0	.38	0	.23	0	.49
Stream Power (Capacity) W/m ² Image: Capacity											İ -						l			
Additional Reach Parameters Drainage Area (SM) Watershed Impervious Cover Estimate (%) Rosgen Classification Bankfull Velocity (fps) 0.54 0.82 1.49 0.96 1.38 0.54 0.82 0.54 0.82 Bankfull Velocity (fps) Q-VHS regression Q-USGS extrapolation Q-USGS extrapolation Channel Thalweg Length (ft) Sinusity 0.54 0.82 0.4%	Stream Power (Capacity) W/m ²				1															
Drainage Area (SM) 0.54 0.82 1.49 0.96 1.38 0.54 0.82 0.54 0.82 Watershed Impervious Cover Estimate (%) 0.4% <		·		_																
Watershed Impervious Cover Estimate (%) 0.4% <td></td> <td>-</td> <td>0</td> <td>54</td> <td>0</td> <td>82</td> <td>1</td> <td>49</td> <td>0</td> <td>96</td> <td>1</td> <td>38</td> <td>0</td> <td>54</td> <td>0</td> <td>82</td> <td>0</td> <td>54</td> <td>0</td> <td>82</td>		-	0	54	0	82	1	49	0	96	1	38	0	54	0	82	0	54	0	82
Rosgen Classification C4/E4 C4/E4<	• • •				-	-					-									
Bankfull Velocity (fps) 5.0 3.8 3.6-4.0 4.9-5.4 2.9-3.7 2.8 3.2 2.2 3.3 Bankfull Velocity (fps) 101-124 97.0 88.0 47.0 63.0 41.0 56.0 Q-NFF regression N/A 101-124 97.0 88.0 47.0 63.0 41.0 56.0 Q-NFF regression N/A 101-124 97.0 88.0 47.0 63.0 41.0 56.0 Q-Manings N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>C4</td> <td>/E4</td> <td>F</td> <td>E4</td> <td>(</td> <td>C4</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>							C4	/E4	F	E4	(C4					-			
Bankfull Discharge (cfs) 101-124 97.0 88.0 47.0 63.0 41.0 56.0 Q-NFF regression Q-Warp regression N/A 101-124 97.0 88.0 47.0 63.0 41.0 56.0 Q-USGS extrapolation N/A C																				
Q-NFF regression N/A Image: Constraint of the system of t			-		-	-				-				-						
Q-USGS extrapolation Q-Mannings N/A Image: Constraint of the co					1								1		-				-	
Valley Length (ft) 607 1,043 607 1,043 Channel Thalweg Length (ft) 607 1,043 607 1,043 Channel Thalweg Length (ft) 776 1,258 Sinuosity 1.05 1.09 1.30 2.30 1.10 1.25 1.28 1.27 1.22 Water Surface Slope (ft/ft) 0.0046 0.0072		N/A																		
Valley Length (ft) 607 1,043 607 1,043 Channel Thalweg Length (ft) 607 1,043 607 1,043 Channel Thalweg Length (ft) 776 1,258 Sinuosity 1.05 1.09 1.30 2.30 1.10 1.25 1.28 1.27 1.22 Water Surface Slope (ft/ft) 0.0046 0.0072																				
Channel Thalweg Length (ft) 776 1,258 Sinuosity 1.05 1.09 1.30 2.30 1.10 1.25 1.28 1.27 1.22 Water Surface Slope (ft/ft) ² 0.0046 0.0072			-		-		-		-				6	07	1,	043	e	607	1,	043
Water Surface Slope (fr/ft) ² 0.0046 0.0072			-		-		-		-								7	76	1,	258
	Sinuosity		1.	05	1.	09	1.	.30	2.	.30	1.	.10	1	.25	1	.28	1	.27	1	.22
	Water Surface Slope (ft/ft) ²		-		-		-		-		-						0.0	0046	0.0	072
			0.0	009	0.0	007	0.	004	0.0	005	0.	009					0.	005	0.	007

(---): Data was not provided N/A: Not Applicable

Table 10b. Baseline Stream Data Summary

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

UT1

			RE- RATION		REF	ERENCE	REACH D	АТА		DES	IGN	AS-BUILT/	BASELINE
Parameter	Gage	U	T1	• •	cres UT1- ich 3		Polecat eek		/arnals eek	U	т1	U	r1
				Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle													
Bankfull Width (ft)		5	5.7	9.1	10.4	5.3	10.9	9.3	10.5	9	.4	9.	2
Floodprone Width (ft)		12	2.7		36	25	65	20	64	21	47	6	5
Bankfull Mean Depth		1	.0	1.0	1.2	1.0	1.1	1.1	1.2	0	.7	0.	7
Bankfull Max Depth		1	4	1	8	1.4	1.7	1.5	1.7	0.8	1.3	1	4
Bankfull Cross Sectional Area (ft ²)	N/A	5	5.7	10.7	11.3	5.4	12.4	10.3	12.3	6	.7	6	3
Width/Depth Ratio	1	5	i.7	7.3	10.1	5.2	9.6	8.1	9.3	13	3.2	13	.3
Entrenchment Ratio	1	2	2.2	3	.9	3.2	8.3	1.9	6.1	2.2	5.0	7.	.1
Bank Height Ratio		2	2.1	1	.0	1.0	1.1	0.9	1.0	1.0	1.0	1	.0
D50 (mm)	1	5	i.1	-		-		-		-		7.	4
Profile													
Riffle Length (ft)		-		-		-		- 1		-		4	28
Riffle Slope (ft/ft)		-		-		0.004	0.047	0.024	0.057	0.006	0.024	0.009	0.016
Pool Length (ft)		-		-		-		-		-		4.2	34.9
Pool Max Depth (ft)	N/A	2	2.0	2	.5	1	.8	2.5	2.6	0.8	2.2	0.4	1.3
Pool Spacing (ft)		-		-		34	52	8	82	38	56	30	73
Pool Volume (ft ³)													
Pattern													
Channel Beltwidth (ft)	1	9	19	21	93	28	50	15	45	23	66	23	66
Radius of Curvature (ft)		4	13	14	60	19	50	8	43	17	52	17	52
Rc:Bankfull Width (ft/ft)	N/A	4	2.3	14.0	60.0	2.0	5.3	0.6	3.2	1.8	5.5	1.8	5.5
Meander Length (ft)	10/4	35	47	14.0	171					56	155	56	155
Meander Width Ratio		1.6	3.3	2.3	8.9	3.0	5.3	1.0	3.0	2.4	7.0	2.4	7.0
Substrate, Bed and Transport Parameters		1.0	5.5	2.0	0.5	5.6	515	1.0	5.0		7.0		7.0
	1	1		1						1		1	
Ri%/Ru%/P%/G%/S% SC%/Sa%/G%/C%/B%/Be%	-												
d16/d35/d50/d84/d95/d100			/5.1/6.7/ 13/-/-	-		-		-		-		0.07/0.28/	
	N/A).6								.2	37.9/	
Reach Shear Stress (Competency) lb/ft ² Max part size (mm) mobilized at bankfull	4					-		-		0	.2	0.	J
	4												
Stream Power (Capacity) W/m ²	l		_	L				l		1			
Additional Reach Parameters	•							•				-	
Drainage Area (SM)		-	.22	0.	.30	0.	41	0.		-	22	0.	
Watershed Impervious Cover Estimate (%)			4%								4%	0.4	
Rosgen Classification			/E4		4		4		4		/E4	C4,	
Bankfull Velocity (fps)			1.7	2.2	2.4	2.2	3.5	4.4	5.2		.6	2	
Bankfull Discharge (cfs)		-		2	5.0	20).3	54	1.0	24	1.0	21	0
Q-NFF regression	1									I			
Q-USGS extrapolation	N/A												
Q-Mannings	1									L			
Valley Length (ft)	ł										86	18	
Channel Thalweg Length (ft)	ł										13	21	
Sinuosity	ł		.1		4		.4	1		1	.1	1	
Water Surface Slope (ft/ft) ²]	-		-		-		-		-		0.0)72
Bankfull Slope (ft/ft)		0.0	160	0.0039	0.0280	0.0	120	0.0	170	-		0.0	103

(---): Data was not provided N/A: Not Applicable

Table 12a. Monitoring Data - Stream Reach Data Summary Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Martin Dairy Reach 1

Parameter	As-Built	/Baseline	M	Y1	N	IY2	N	/1Y3	N	1Y4	N	1Y5	M	Y6	M	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)	1	4.8		5.0												
Floodprone Width (ft)		.50		50												
Bankfull Mean Depth).9		.9												
Bankfull Max Depth		1.4		.6												
Bankfull Cross-Sectional Area (ft ²)		3.2		3.2												
Width/Depth Ratio		6.7		5.9												
Entrenchment Ratio		0.1).0												
Bank Height Ratio		L.O		.1												
D50 (mm)	1	3.1	20).6												
Profile																
Riffle Length (ft)	12.0	35.9														
Riffle Slope (ft/ft)	0.0039	0.0193														
Pool Length (ft)	38.2	77.4														
Pool Max Depth (ft)	1.4	2.5														
Pool Spacing (ft)	41	101														
Pool Volume (ft ³)																
Pattern		T	1													
Channel Beltwidth (ft)	36	75														
Radius of Curvature (ft)	27	75														
Rc:Bankfull Width (ft/ft)	1.8	5.0														
Meander Wave Length (ft)	60	225														
Meander Width Ratio	2.4	5.0														
Additional Reach Parameters		I/E4														
Rosgen Classification		76	-													
Channel Thalweg Length (ft)		.27	-													
Sinuosity (ft)		.27	-													
Water Surface Slope (ft/ft) Bankfull Slope (ft/ft)		005														
Ri%/Ru%/P%/G%/S%	0.	005	J													
SC%/Sa%/G%/C%/B%/Be%	SC/0.4E	/2.8/21.8/	SC/0 19/	14.6/45.0											1	
d16/d35/d50/d84/d95/d100																
0/ of Doosh with Fradin - Doolo		/128.0)%	68.5/	128.0 %									<u> </u>			
% of Reach with Eroding Banks	(J%	0	%	1						L		L			

(---): Data was not provided

Table 11. Morphology and Hydraulic Summary (Dimensional Parameters - Cross-Section) Martin Dairy Mitigation Site

DMS Project No. 97087 Monitoring Year 1 - 2018

							Ma	rtin Dai	iry Reac	:h 1						
			Cros	ss-Secti	on 1 (R	iffle)					Cro	ss-Sect	ion 2 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft) ¹	505.8	505.9							505.7	505.9						
Low Bank Elevation (ft)	505.8	506.1							505.7	505.8						
Bankfull Width (ft)	14.8	15.0							20.0	22.5						
Floodprone Width (ft)	150	150							N/A	N/A						
Bankfull Mean Depth (ft)	0.9	0.9							1.5	1.3						
Bankfull Max Depth (ft)	1.4	1.6							3.0	2.7						
Bankfull Cross-Sectional Area (ft ²)	13.2	13.2							29.4	29.4						
Bankfull Width/Depth Ratio	16.7	16.9							13.6	17.2						
Entrenchment Ratio ²	10.1	10.0							N/A	N/A						
Bankfull Bank Height Ratio ³	1.0	1.1							N/A	N/A						
							Ma	rtin Dai	iry Reac	:h 2						
			Cro	ss-Secti	ion 3 (P	ool)					Cros	ss-Secti	on 4 (R	iffle)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft) ¹	501.8	501.8							501.5	501.4						
Low Bank Elevation (ft)	501.8	501.8							501.5	501.4						
Bankfull Width (ft)	20.8	21.3							12.8	12.4						
Floodprone Width (ft)	N/A	N/A							200	200						
Bankfull Mean Depth (ft)	1.7	1.6							1.1	1.1						
Bankfull Max Depth (ft)	3.5	3.5							1.8	1.9						
Bankfull Cross-Sectional Area (ft ²)	34.9	34.9							14.2	14.2						
Bankfull Width/Depth Ratio	12.4	13.1							11.6	10.9						
Entrenchment Ratio ²	N/A	N/A							15.6	16.1						
Bankfull Bank Height Ratio ³	N/A	N/A							1.0	1.0						
								U	Т1							
			Cros	ss-Secti	on 5 (R	iffle)					Cro	ss-Secti	ion 6 (P	ool)		
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7	Base	MY1	MY2	MY3	MY4	MY5	MY6	MY7
Bankfull Elevation (ft) ¹	504.0	503.9							504.1	504.1						
Low Bank Elevation (ft)	504.0	504.0							504.1	504.1						
Bankfull Width (ft)	9.2	9.5							11.5	11.9						
Floodprone Width (ft)	65	65							N/A	N/A						
Bankfull Mean Depth (ft)	0.7	0.7							1.0	1.0						
Bankfull Max Depth (ft)	1.4	1.4							2.0	2.2						
Bankfull Cross-Sectional Area (ft ²)	6.3	6.3							11.8	11.8						
Bankfull Width/Depth Ratio	13.3	14.3							11.3	12.1						
Entrenchment Ratio ²	7.1	6.8							N/A	N/A						
Bankfull Bank Height Ratio ³	1.0	1.1							N/A	N/A						

¹For MY1 through MY7 bankfull elevation was calculated using the Standard Measurement of the BHR Monitoring Parameter provided by NCIRT and NCDMS.

²Entrenchment Ratio is the flood prone width divided by the bankfull width.

³Bank Height Ratio is the bank height divided by the max depth of the bankfull channel.

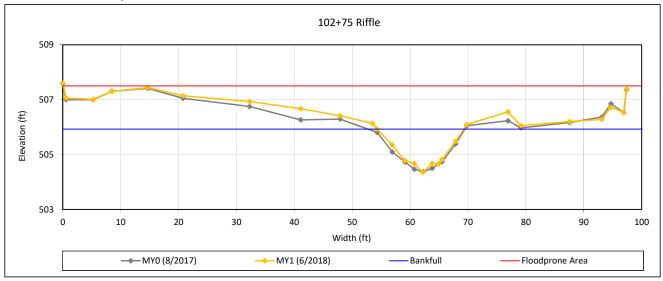
Table 12b. Monitoring Data - Stream Reach Data Summary Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Martin Dairy Reach 2

Parameter	As-Built	/Baseline	М	Y1	N	1Y2	Ν	/1Y3	N	1Y4	N	IY5	M	Y6	M	Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		2.8	12													
Floodprone Width (ft)		00	20													
Bankfull Mean Depth		l.1		.1												
Bankfull Max Depth		L.8		.9												
Bankfull Cross-Sectional Area (ft ²)		4.2		1.2												
Width/Depth Ratio		1.6	10													
Entrenchment Ratio		5.6	16													
Bank Height Ratio		L.O		.0												
D50 (mm)	1	0.2	38	3.7												
Profile																
Riffle Length (ft)	16.7	51.0														
Riffle Slope (ft/ft)	0.0166	0.0266														
Pool Length (ft)	36.1	83.1														
Pool Max Depth (ft)	1.1	1.9	1													
Pool Spacing (ft)	55	111	_													
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	39	81	1													
Radius of Curvature (ft)	29	81	4													
Rc:Bankfull Width (ft/ft)	1.8	5.0	4													
Meander Wave Length (ft)	65	243	-													
Meander Width Ratio	2.4	5.0														
Additional Reach Parameters	<i>C1</i>	I/E4	1													
Rosgen Classification Channel Thalweg Length (ft)		258	-													
Sinuosity (ft)		.22	-													
Water Surface Slope (ft/ft)		.22	-													
Bankfull Slope (ft/ft)		0072	1													
Ri%/Ru%/P%/G%/S%	0.	007	J													
SC%/Sa%/G%/C%/B%/Be%																
	0 11/1 10)/5.0/27.6/	0 55/13 27	/24.7/68.5/	r		1		1				T		[
d16/d35/d50/d84/d95/d100		/512.0	104.7													
% of Reach with Eroding Banks)%		%												
(): Data was not provided	,	//0	0	70	I								I		I	

(---): Data was not provided

Table 12c. Monitoring Data - Stream Reach Data Summary Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018


UT1

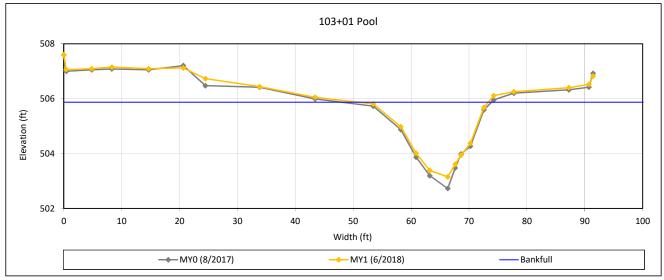
Parameter	As-Built	/Baseline	M	Y1	N	1Y2	N	VIY3	M	IY4	N	AY5	M	Y6	N	1Y7
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Dimension and Substrate - Riffle																
Bankfull Width (ft)		.2	9	.5												
Floodprone Width (ft)	6	55	e	i5												
Bankfull Mean Depth		.7	0	.7												
Bankfull Max Depth		4		.4												
Bankfull Cross-Sectional Area (ft ²)	6	.3	6	.3												
Width/Depth Ratio	13	3.3		1.3												
Entrenchment Ratio	7	.1	6	.8												
Bank Height Ratio		0		.1												
D50 (mm)	7	.4	73	2.1												
Profile																
Riffle Length (ft)	4	28														
Riffle Slope (ft/ft)	0.009	0.016														
Pool Length (ft)	4.2	34.9														
Pool Max Depth (ft)	0.4	1.3														
Pool Spacing (ft)	30	73														
Pool Volume (ft ³)																
Pattern																
Channel Beltwidth (ft)	23	66														
Radius of Curvature (ft)	17	52														
Rc:Bankfull Width (ft/ft)	1.8	5.5														
Meander Wave Length (ft)	56	155														
Meander Width Ratio	2.4	7.0														
Additional Reach Parameters																
Rosgen Classification		/E4														
Channel Thalweg Length (ft)		13														
Sinuosity (ft)		1														
Water Surface Slope (ft/ft)		072														
Bankfull Slope (ft/ft)	0.0	103														
Ri%/Ru%/P%/G%/S%																
SC%/Sa%/G%/C%/B%/Be%																
d16/d35/d50/d84/d95/d100		/7.3/20.1/	SC/9.38/2													
		/64.0		/256.0												
% of Reach with Eroding Banks	C	1%	0	%												

(---): Data was not provided

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Cross-Section 1 Martin Dairy Reach 1

Bankfull Dimensions

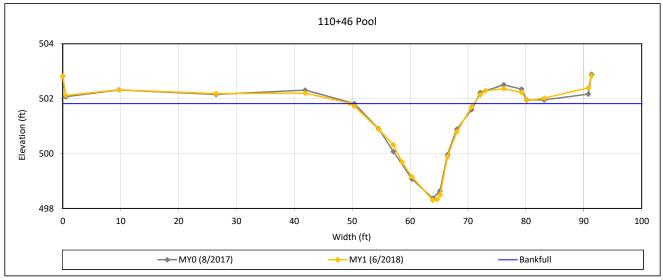

- 13.2 x-section area (ft.sq.)
- 15.0 width (ft)
- 0.9 mean depth (ft)
- 1.6 max depth (ft)
- 15.3 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 16.9 width-depth ratio
- 150.0 W flood prone area (ft)
- 10.0 entrenchment ratio
- entrenennent rati
- 1.1 low bank height ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Cross-Section 2 Martin Dairy Reach 1

Bankfull Dimensions

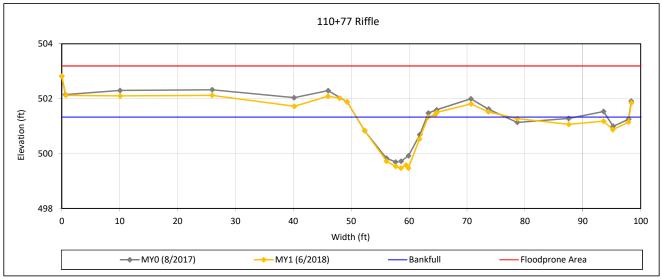

- 29.4 x-section area (ft.sq.)
- 22.5 width (ft)
- 1.3 mean depth (ft)
- 2.7 max depth (ft)
- 23.4 wetted perimeter (ft)
- 1.3 hydraulic radius (ft)
- 17.2 width-depth ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Cross-Section 3 Martin Dairy Reach 2

Bankfull Dimensions

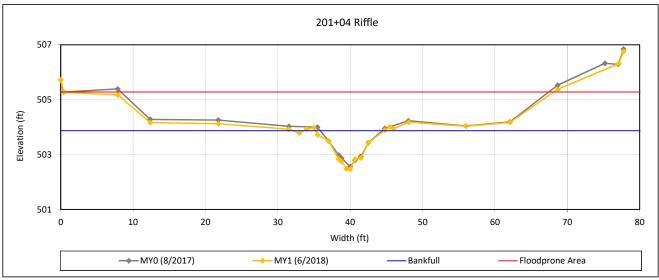

- 34.9 x-section area (ft.sq.)
- 21.3 width (ft)
- 1.6 mean depth (ft)
- 3.5 max depth (ft)
- 22.9 wetted perimeter (ft)
- 1.5 hydraulic radius (ft)
- 13.1 width-depth ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Cross-Section 4 Martin Dairy Reach 2

Bankfull Dimensions

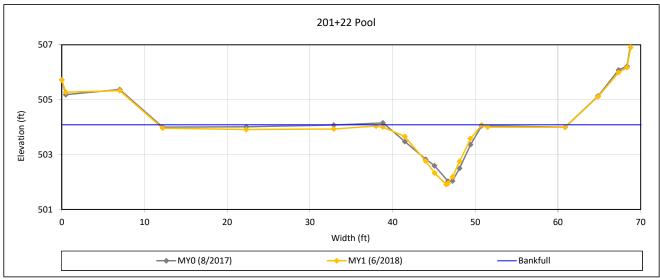

- 14.2 x-section area (ft.sq.)
- 12.4 width (ft)
- 1.1 mean depth (ft)
- 1.9 max depth (ft)
- 13.2 wetted perimeter (ft)
- 1.1 hydraulic radius (ft)
- 10.9 width-depth ratio
- 200.0 W flood prone area (ft)
- 16.1 entrenchment ratio
- 1.0 low bank height ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Cross-Section 5 UT1

Bankfull Dimensions


- 6.3 x-section area (ft.sq.)
- 9.5 width (ft)
- 0.7 mean depth (ft)
- 1.4 max depth (ft)
- 10.0 wetted perimeter (ft)
- 0.6 hydraulic radius (ft)
- 14.3 width-depth ratio
- 65.0 W flood prone area (ft)
- 6.8 entrenchment ratio
- 1.1 low bank height ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

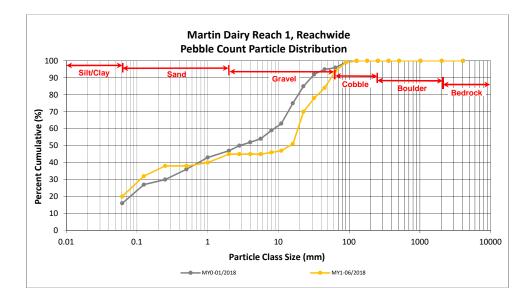
Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

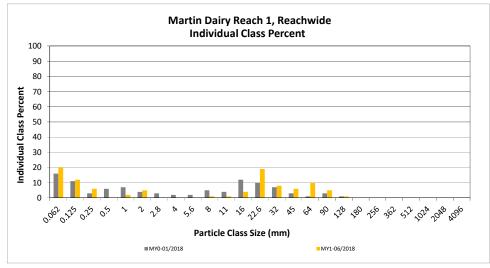
Cross-Section 6 UT1

Bankfull Dimensions

- 11.8 x-section area (ft.sq.)
- 11.9 width (ft)
- 1.0 mean depth (ft)
- 2.2 max depth (ft)
- 12.8 wetted perimeter (ft)
- 0.9 hydraulic radius (ft)
- 12.1 width-depth ratio

Survey Date: 6/2018 Field Crew: Wildlands Engineering

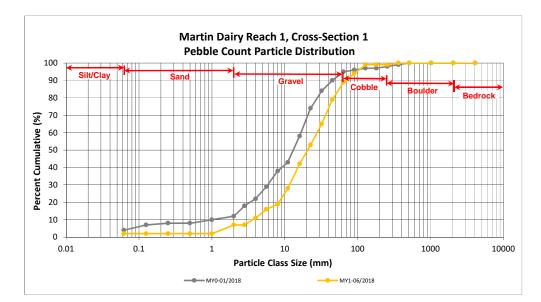

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

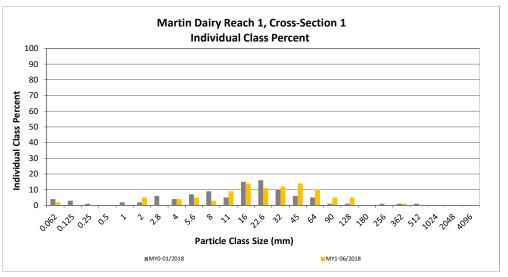

Martin Dairy Reach 1, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
	au. (a)	min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		20	20	20	20
	Very fine	0.062	0.125	1	11	12	12	32
.0	Fine	0.125	0.250		6	6	6	38
SAND	Medium	0.25	0.50					38
,	Coarse	0.5	1.0	1	1	2	2	40
	Very Coarse	1.0	2.0	1	4	5	5	45
	Very Fine	2.0	2.8					45
	Very Fine	2.8	4.0					45
	Fine	4.0	5.6					45
	Fine	5.6	8.0	1		1	1	46
VEL	Medium	8.0	11.0		1	1	1	47
GRAVEL	Medium	11.0	16.0	2	2	4	4	51
•	Coarse	16.0	22.6	15	4	19	19	70
	Coarse	22.6	32	7	1	8	8	78
	Very Coarse	32	45	6		6	6	84
	Very Coarse	45	64	10		10	10	94
	Small	64	90	5		5	5	99
COBBLE	Small	90	128	1		1	1	100
COBL	Large	128	180					100
•	Large	180	256					100
	Small	256	362					100
OFR	Small	362	512					100
BOULDER	Medium	512	1024					100
<u>ه</u>	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide
el materials (mm)
Silt/Clay
0.18
14.6
45.0
68.5
128.0

,

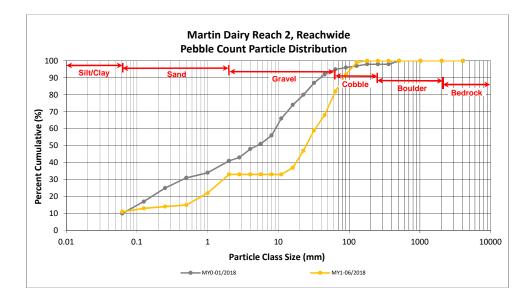


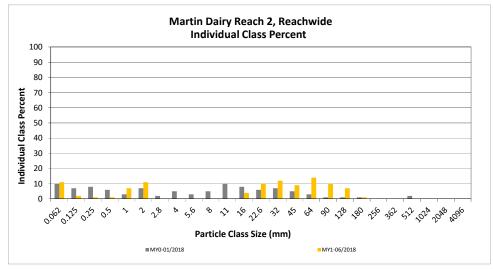

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Martin Dairy Reach 1, Cross-Section 1

		Diame	ter (mm)		Sum	mary
Pai	rticle Class			Riffle 100-Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125			2
_	Fine	0.125	0.250			2
SAND	Medium	0.25	0.50			2
יר	Coarse	0.5	1.0			2
	Very Coarse	1.0	2.0	5	5	7
	Very Fine	2.0	2.8			7
	Very Fine	2.8	4.0	4	4	11
	Fine	4.0	5.6	5	5	16
	Fine	5.6	8.0	3	3	19
NEL	Medium	8.0	11.0	9	9	28
GRAVEL	Medium	11.0	16.0	14	14	42
•	Coarse	16.0	22.6	11	11	53
	Coarse	22.6	32	12	12	65
	Very Coarse	32	45	14	14	79
	Very Coarse	45	64	10	10	89
	Small	64	90	5	5	94
alt	Small	90	128	5	5	99
COBBLE	Large	128	180			99
-	Large	180	256			99
	Small	256	362	1	1	100
BOULDER	Small	362	512			100
aOULL	Medium	512	1024			100
v	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 1										
Ch	annel materials (mm)										
D ₁₆ =	5.60										
D ₃₅ =											
D ₅₀ =	20.6										
D ₈₄ =	53.7										
D ₉₅ =	96.6										
D ₁₀₀ =	D ₁₀₀ = 362.0										

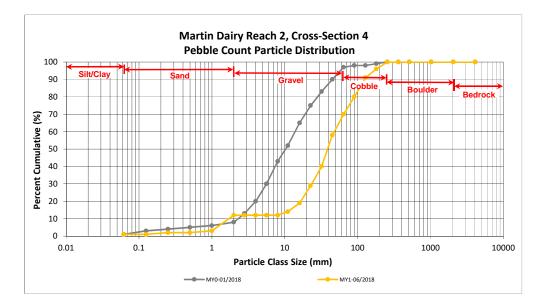

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

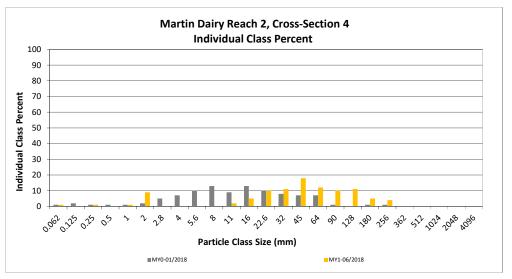

Martin Dairy Reach 2, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach S	ummary
Par	ticle Class	min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		11	11	11	11
	Very fine	0.062	0.125		2	2	2	13
	Fine	0.125	0.250		1	1	1	14
SAND	Medium	0.25	0.50		1	1	1	15
5	Coarse	0.5	1.0		7	7	7	22
	Very Coarse	1.0	2.0	3	8	11	11	33
	Very Fine	2.0	2.8					33
	Very Fine	2.8	4.0					33
	Fine	4.0	5.6					33
	Fine	5.6	8.0					33
GRAVEL	Medium	8.0	11.0					33
GRAT	Medium	11.0	16.0	1	3	4	4	37
	Coarse	16.0	22.6	3	7	10	10	47
	Coarse	22.6	32	11	1	12	12	59
	Very Coarse	32	45	6	3	9	9	68
	Very Coarse	45	64	9	5	14	14	82
	Small	64	90	10		10	10	92
COBBLE	Small	90	128	6	1	7	7	99
COBL	Large	128	180	1		1	1	100
-	Large	180	256					100
	Small	256	362					100
BOULDER	Small	362	512					100
aOUL	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide						
Chann	Channel materials (mm)					
D ₁₆ =	0.55					
D ₃₅ =	13.27					
D ₅₀ =	24.7					
D ₈₄ =	68.5					
D ₉₅ =	104.7					
D ₁₀₀ =	180.0					

,




Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

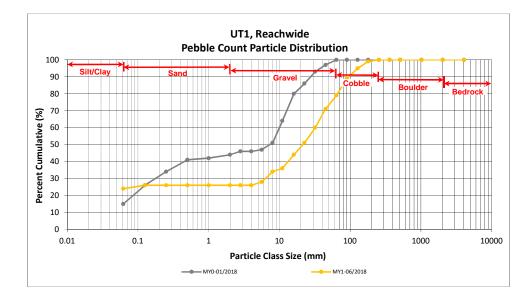
Martin Dairy Reach 2, Cross-Section 4

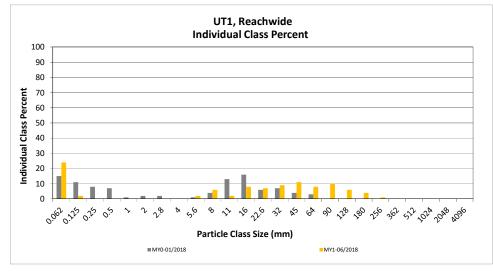
			ter (mm)		Summary		
Pa	rticle Class			Riffle 100-Count	Class	Percent	
		min	max		Percentage	Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	1	1	1	
	Very fine	0.062	0.125			1	
	Fine	0.125	0.250	1	1	2	
SAND	Medium	0.25	0.50			2	
יכ	Coarse	0.5	1.0	1	1	3	
	Very Coarse	1.0	2.0	9	9	12	
	Very Fine	2.0	2.8			12	
	Very Fine	2.8	4.0			12	
	Fine	4.0	5.6			12	
	Fine	5.6	8.0			12	
JEL	Medium	8.0	11.0	2	2	14	
GRAVEL	Medium	11.0	16.0	5	5	19	
·	Coarse	16.0	22.6	10	10	29	
	Coarse	22.6	32	11	11	40	
	Very Coarse	32	45	18	18	58	
	Very Coarse	45	64	12	12	70	
	Small	64	90	10	10	80	
alt	Small	90	128	11	11	91	
COBBLE	Large	128	180	5	5	96	
•	Large	180	256	4	4	100	
	Small	256	362			100	
DER	Small	362	512			100	
BOULDER	Medium	512	1024			100	
V	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 4						
Ch	Channel materials (mm)						
D ₁₆ =	12.78						
D ₃₅ =	27.32						
D ₅₀ =	D ₅₀ = 38.7						
D ₈₄ =	D ₈₄ = 102.3						
D ₉₅ =	D ₉₅ = 168.1						
D ₁₀₀ =	256.0						

Reachwide and Cross-Section Pebble Count Plots Martin Dairy Mitigation Site

DMS Project No. 97087

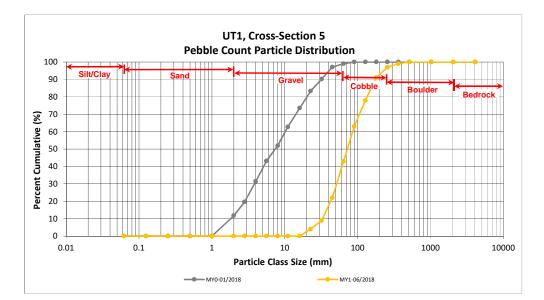

Monitoring Year 1 - 2018

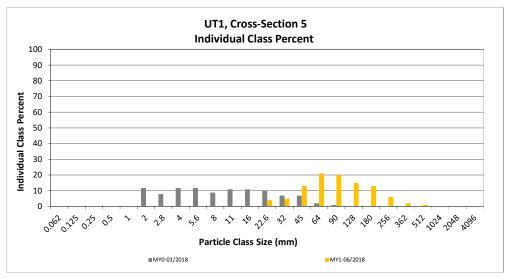

UT1, Reachwide

		Diame	ter (mm)	Ра	rticle Co	unt	Reach S	ummary
Par	ticle Class						Class	Percent
		min	max	Riffle	Pool	Total	Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		24	24	24	24
	Very fine	0.062	0.125		2	2	2	26
	Fine	0.125	0.250					26
SAND	Medium	0.25	0.50					26
יל	Coarse	0.5	1.0					26
	Very Coarse	1.0	2.0					26
	Very Fine	2.0	2.8					26
	Very Fine	2.8	4.0					26
	Fine	4.0	5.6		2	2	2	28
	Fine	5.6	8.0	2	4	6	6	34
VIEL	Medium	8.0	11.0		2	2	2	36
GRAVEL	Medium	11.0	16.0	2	6	8	8	44
-	Coarse	16.0	22.6	4	3	7	7	51
	Coarse	22.6	32	6	3	9	9	60
	Very Coarse	32	45	8	3	11	11	71
	Very Coarse	45	64	7	1	8	8	79
	Small	64	90	10		10	10	89
COBBLE	Small	90	128	6		6	6	95
COBL	Large	128	180	4		4	4	99
-	Large	180	256	1		1	1	100
	Small	256	362					100
DER	Small	362	512					100
BOULDER	Medium	512	1024					100
V	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide					
Channel materials (mm)					
D ₁₆ =	Silt/Clay				
D ₃₅ =	9.38				
D ₅₀ =	21.5				
D ₈₄ =	75.9				
D ₉₅ =	128.0				
D ₁₀₀ =	256.0				

,




Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

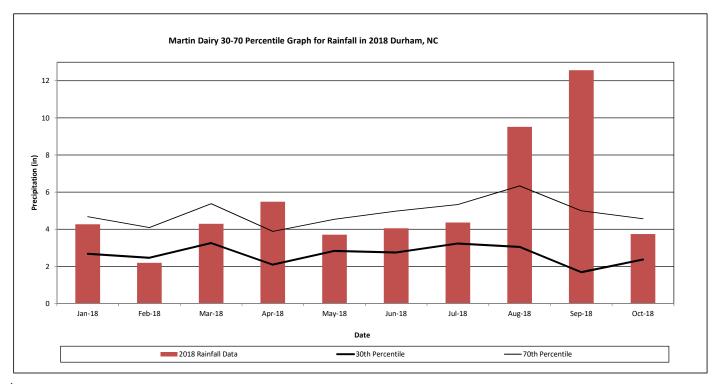
UT1, Cross-Section 5

		Diame	ter (mm)		Sum	mary
Pai	ticle Class			Riffle 100-Count	Class	Percent
		min	max		Percentage	Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062			0
	Very fine	0.062	0.125			0
_	Fine	0.125	0.250			0
SAND	Medium	0.25	0.50			0
יכ	Coarse	0.5	1.0			0
	Very Coarse	1.0	2.0			0
	Very Fine	2.0	2.8			0
	Very Fine	2.8	4.0			0
	Fine	4.0	5.6			0
	Fine	5.6	8.0			0
IEL	Medium	8.0	11.0			0
GRAVEL	Medium	11.0	16.0			0
•	Coarse	16.0	22.6	4	4	4
	Coarse	22.6	32	5	5	9
	Very Coarse	32	45	13	13	22
	Very Coarse	45	64	21	21	43
	Small	64	90	20	20	63
alt	Small	90	128	15	15	78
COBBLE	Large	128	180	13	13	91
-	Large	180	256	6	6	97
	Small	256	362	2	2	99
DER	Small	362	512	1	1	100
BOULDER	Medium	512	1024			100
V	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

	Cross-Section 5					
Ch	Channel materials (mm)					
D ₁₆ =	38.45					
D ₃₅ =	55.96					
D ₅₀ =	72.1					
D ₈₄ =	D ₈₄ = 149.8					
D ₉₅ =	D ₉₅ = 227.6					
D ₁₀₀ =	512.0					

APPENDIX 5. Hydrology Summary and Data

Table 13. Verification of Bankfull Events


Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

	Date of Data	Date of	
Reach	Collection	Occurrence	Method
Martin Diary	6/6/2018	4/15/2018	
Wai tiri Diai y	10/17/2018	9/17/2018*	Crest Gage/
	6/6/2018	4/15/2018	Pressure
UT1	10/17/2018	7/6/2018	Transducer
	10/17/2018	9/17/2018*	

*Hurricane Florence

Monthly Rainfall Data

Martin Dairy Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

¹ 2018 monthly rainfall from USDA Station Durham 11 W

² 30th and 70th percentile rainfall data collected from weather station Chapel Hill 2 W, NC (USDA, 2018).

MONITORING YEAR 1 ANNUAL REPORT Final

MARTIN DAIRY BUFFER MITIGATION SITE

Orange County, NC NCDEQ Contract No. 006831 DMS Project Number 97087 NCDWR Project Number 2016-0366

Data Collection Period: September 2018 Draft Submission Date: November 12, 2018 Final Submission Date: December 10, 2018

PREPARED FOR:

NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652 **PREPARED BY:**

Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

Jason Lorch

jlorch@wildlandseng.com Phone: (919) 851-9986

MARTIN DAIRY BUFFER MITIGATION SITE

Monitoring Year 1 Report

TABLE OF CONTENTS

Section 1: PROJECT OVERVIEW	2
1.1 Project Summary	2
1.2 Project Goals and Objectives	
1.3 Monitoring Year 1 Data Assessment	
1.3.1 Vegetative Assessment	
1.4 Monitoring Year 1 Summary	3
Section 2: METHODOLOGY	3
Section 3: REFERENCES	4

APPENDICES

Appendix 1	General Figures and Tables
Figure 1	Project Vicinity Map
Figure 2	Service Area
Figure 3	Project Component / Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Information and Attributes
Table 5	Adjacent Forested Areas Existing Tree and Shrub Species
Table 6	Planted Tree Species

Appendix 2 Visual Assessment Data

Figure 4Monitoring Plan ViewTable 7Vegetation Condition Assessment Table
Vegetation Plot Photographs

Appendix 3 Vegetation Plot Data

- Table 8Vegetation Plot Criteria Attainment Table
- Table 9 CVS Vegetation Tables Metadata
- Table 10 Planted and Total Stem Counts

Appendix 4 Overview Photos

Section 1: PROJECT OVERVIEW

1.1 Project Summary

Wildlands Engineering, Inc. (Wildlands) implemented a full delivery project at the Martin Dairy Mitigation Site ("Site") for the North Carolina Department of Environmental Quality Division of Mitigation Services (DMS) to restore a total of 2,135 linear feet (LF) of perennial streams in Orange County, NC. The site included the restoration of two unnamed tributaries (Martin Dairy and UT1). The project also restored 10.139 acres (441,654.84 ft²) of riparian buffer at the Site, which will provide 379,169 Riparian Buffer Credits. The project Site was planned, designed, and constructed on land surrounding Martin Dairy and its tributaries. The Site is located approximately eight miles northeast of Hillsborough, NC and eight miles south of Caldwell, NC (Figure 1) in the Neuse River Basin 8-Digit Hydrologic Unit Code (HUC) 03020201. The project is located within a DMS targeted watershed for the Neuse River Basin Hydrologic Unit Code (HUC) 03020201030030 and NC Division of Water Resources (DWR) Subbasin 03-04-01. The Site drains to Buckwater Creek, which flows to Falls Lake, which is classified as water supply waters (WS-IV) and nutrient sensitive waters (NSW). The 11.155 acre site is protected with a permanent conservation easement.

The project has been planned, designed and constructed per Martin Dairy Mitigation Plan (2017) and the Consolidated Buffer Mitigation Rule 15A NCAC 02B .0295 (effective November 1, 2015). The purpose of the riparian buffer restoration is to provide riparian buffer credits to compensate for buffer impacts within the Hydrologic Unit Code 03020201 and the Falls Lake Watershed. The service area for the Riparian Buffer Credits is depicted in Figure 2. The mitigation credits generated from this site are listed in Table 1 and shown in Figure 3.

1.2 Project Goals and Objectives

Prior to construction activities, the primary degradation on the Site was the original clearing of the Site and channelization of Martin Dairy and UT1. The channelization involved straightening and deepening of the stream (as indicated by the amount of dredge spoil in the floodplain). In the past livestock were grazed on the Site, which contributed to bank sloughing. Table 4 in Appendix 1 presents the pre-restoration conditions in more detail. The restored riparian buffer areas within the site will aid in protecting water quality.

The main objective of the project was to reduce nitrogen and phosphorus loading to the Neuse River tributaries by establishing a forested riparian buffer on land previously used for agricultural purposes. The riparian buffer will immobilize nutrients, reducing quantities available to downstream aquatic ecosystems in the Neuse River Basin.

11.115 acres of land were protected with a conservation easement. Out of the 11.155 acres, 10.139 acres were restored for Neuse River buffer credit and 1.017 acres will not generate buffer mitigation credit. In general, riparian buffer restoration area widths on streams extend out to 200 feet from top of bank for Neuse River buffer credits. Maps detailing the credit generation are provided in Figure 3.

1.3 Monitoring Year 1 Data Assessment

The final mitigation plan was submitted and accepted by DMS in March 2017. Construction activities were completed by Land Mechanic Designs, Inc in July 2017. The planting was completed by Bruton Natural Systems, Inc. in December 2017. The baseline as-built survey for the stream mitigation work was completed by Turner Land Surveying in August 2017 and for the buffer mitigation component in January 2018. Refer to Appendix 1 for detailed project activity, history, contact information, and watershed/site background information.

Vegetative performance for buffer restoration areas will be in accordance with 15A NCAC 02B .0295(n)(2)(B), and (n)(4) (effective November 1, 2015). To meet success criteria, areas generating buffer mitigation credits shall include a minimum of four native hardwood tree species or four native hardwood tree and native shrub species, where no one species is greater than 50 percent of stems, and have a survival of 260 planted stems per acre at the end of the required monitoring period (MY5) (no interim success criteria required). In order for the monitoring to be terminated, DWR must provide a written approval of vegetation success of buffer restoration areas generating buffer credit. Annual monitoring was conducted to assess the condition of the vegetation in September 2018.

1.3.1 Vegetative Assessment

The quantity of monitoring vegetation plots was determined in accordance with the Carolina Vegetative Sampling

Protocol (CVS Levels I & II) such that at least 2 percent of the Site is encompassed in monitoring plots. A total of 8 vegetation plots (10 meters by 10 meters) were randomly established between the conservation easement boundaries and five feet from the top of stream banks. The plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs will be taken at the origin looking diagonally across the plot to the opposite corner on an annual basis. Species composition, density, and survival rates will be evaluated on an annual basis by plot and for the entire site. The extent of invasive species coverage will also be monitored and controlled as necessary.

The monitoring year 1 (MY1 of 5) vegetative survey was completed in September 2018. The 2018 annual vegetation monitoring resulted in an average survivability of 491 stems per acre, which is greater than the final requirement of 320 stems per acre, but approximately 18% less than the baseline density recorded (597 stems/acre) in January 2018. There was an average of 12 stems per plot compared to 14 stems per plot in MY-0. The site is on track to meet its final success criteria. Please refer to Appendix 3 for vegetation plot criteria attainment data, CVS vegetation plot metadata, and vegetation summary tables and Appendix 2 for vegetation plot photographs, vegetation condition assessment table, and monitoring plan view.

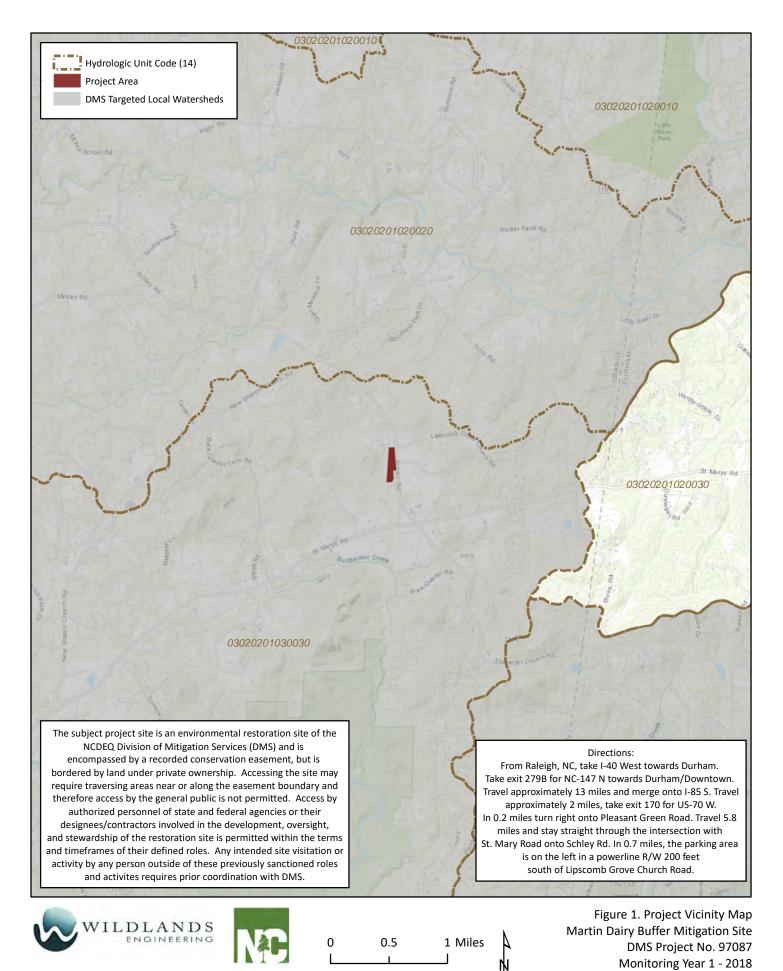
1.4 Monitoring Year 1 Summary

Overall, the Site has met the required vegetation success criteria for MY1. All the vegetation plots met the MY1 success criteria as seen in the monitoring components map. At this time no remedial actions are proposed.

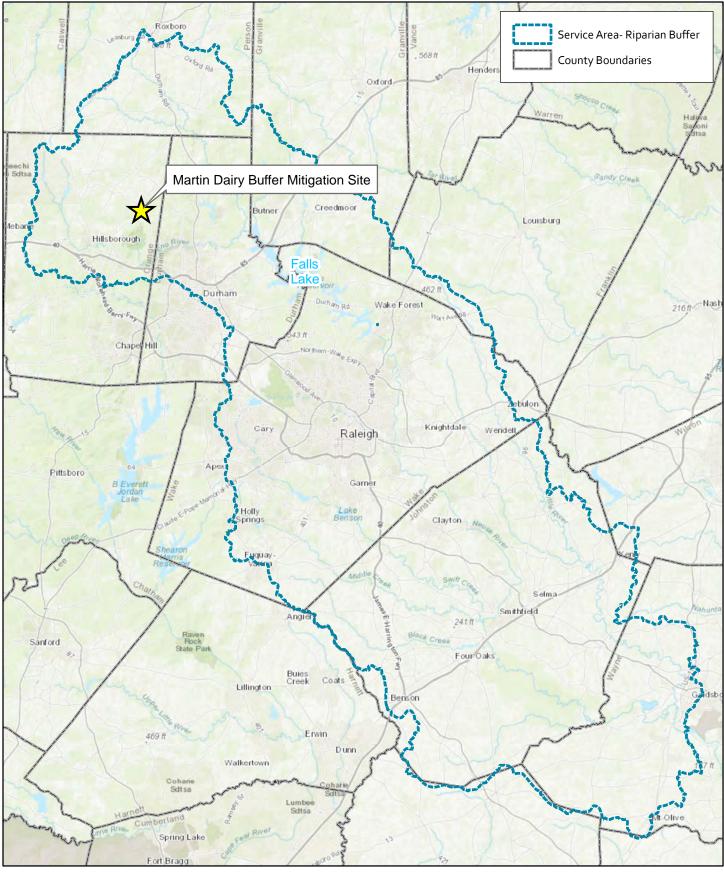
Summary information/data related to the performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Mitigation Plan documents available on DMS's website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

Section 2: METHODOLOGY

Planted woody vegetation was monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-EEP Level 2 Protocol (Lee et al., 2006). A total of eight standard 10 meter by 10 meter vegetation plots were established within the project easement area.



Section 3: REFERENCES


- Breeding, R. 2010. Neuse River Basin Restoration Priorities. North Carolina Ecosystem Enhancement Program.
- Guidelines for Riparian Buffer Restoration. NC Department of Environment and Natural Resources, Ecosystem Enhancement Program. October 2004.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. 2006. CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from http://www.nceep.net/business/monitoring/veg/datasheets.htm.
- Peet, R.K., T.R. Wentworth and P.S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63:262-274. http://cvs.bio.unc.edu/methods.htm
- Schafale, M.P. and Weakley, A.S. 1990. A Classification of the Natural Communities of North Carolina, Third Approximation.
- Wildlands Holdings II, LLC (2017). Martin Dairy Mitigation Site. NCDWR, Raleigh NC. http://portal.ncdenr.org/web/wq/nutrientbufferbanks

APPENDIX 1. General Figures and Tables

Orange County, NC

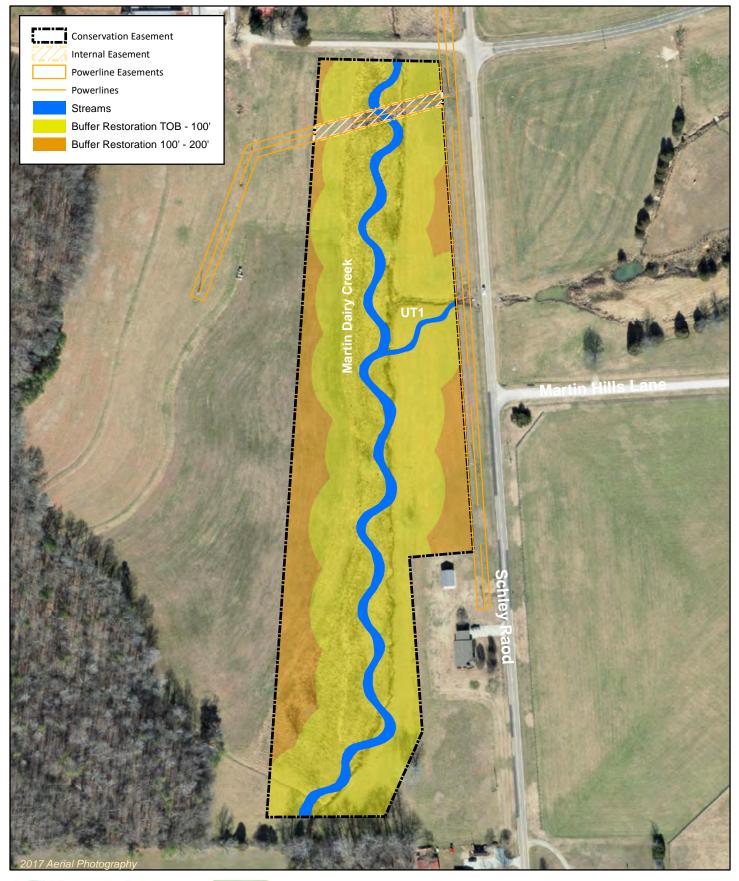
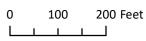

0 5 10 Miles

Figure 2. Service Area Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

4


Ŵ

Orange County, NC

ψ

Figure 3. Project Component / Asset Map Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Orange County, NC

Table 1. Project Components and Mitigation Credits Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

	MITIGATION CREDITS											
Riparian Buffer (15A NCAC 02B.0295)								If Converted to Nutrient Offset				
LocationJurisdictional StreamsRestoration TypeReach ID /ComponentBuffer Width (ft)Creditable Area 							Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)				
Rural	Subject	Restoration	Martin Dairy	0-100	348,392.88	1	100%	1.00000	348,392.88	No	0.000	0.000
Martin Dairy 101-200 93,261.96 1 33% 3.0000 30,776.45 No							0.000	0.000				
	SUBTOTALS 441,654.84 379,169.33						0.000	0.000				

*Riparian buffer credits are not convertible to nutrient offset because the site was used for hay production and livestock have been removed.

Table 2. Project Activity and Reporting History

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Activity or Report	Date Collection Complete	Completion or Scheduled Delivery
Conservation Easement	N/A	November 2016
Mitigation Plan	March 2017	March 2017
Bare Root Planting	N/A	December 2017
As-Built & Baseline Monitoring Document	January 2018	January 2018
Year 1 Monitoring	September 2018	December 2018
Year 2 Monitoring	2019	December 2019
Year 3 Monitoring	2020	December 2020
Year 4 Monitoring	2021	December 2021
Year 5 Monitoring	2022	December 2022

Table 3. Project Contact Table

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

	Wildlands Engineering, Inc.		
Designer	312 West Millbrook Road, Suite 225		
Angela Allen, PE	Raleigh, NC 27609	Raleigh, NC 27609	
	919.851.9986		
	Bruton Natural Systems, Inc		
Planting Contractor	P.O. Box 1197		
	Fremont, NC 27830		
Nursery Stock Suppliers	Dykes and Son Nursery		
Monitoring Performers	Wildlands Engineering, Inc.		
Monitoring, POC	Jason Lorch		
	919.851.9986, ext. 107		

Table 4. Project Information and AttributesMartin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

	PROJECT INFORMATION			
Project Name	Martin Dairy Buffer Mitigation Site			
County	Orange County			
Project Area (acres)	11.155			
Project Coordinates (latitude and longitude)	36° 7' 25.76"N 79° 0' 14.26"W			
PROJECT WATERSHED SUMMARY INFORMATION				
Physiographic Province	Carolina Slate Belt of the Piedmont Physiographic Province			
River Basin	Neuse			
USGS Hydrologic Unit 8-digit	03020201			
USGS Hydrologic Unit 14-digit	03020201030030			
DWR Sub-basin	03-04-01			
Project Drainage Area (acres)	526.0			
Project Drainage Area Percentage of Impervious	0.4%			
CGIA Land Use Classification	59.0% forested, 40.6% cultivated, 0.40% impervious			

Table 5. Adjacent Forested Areas Existing Tree and Shrub Species Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

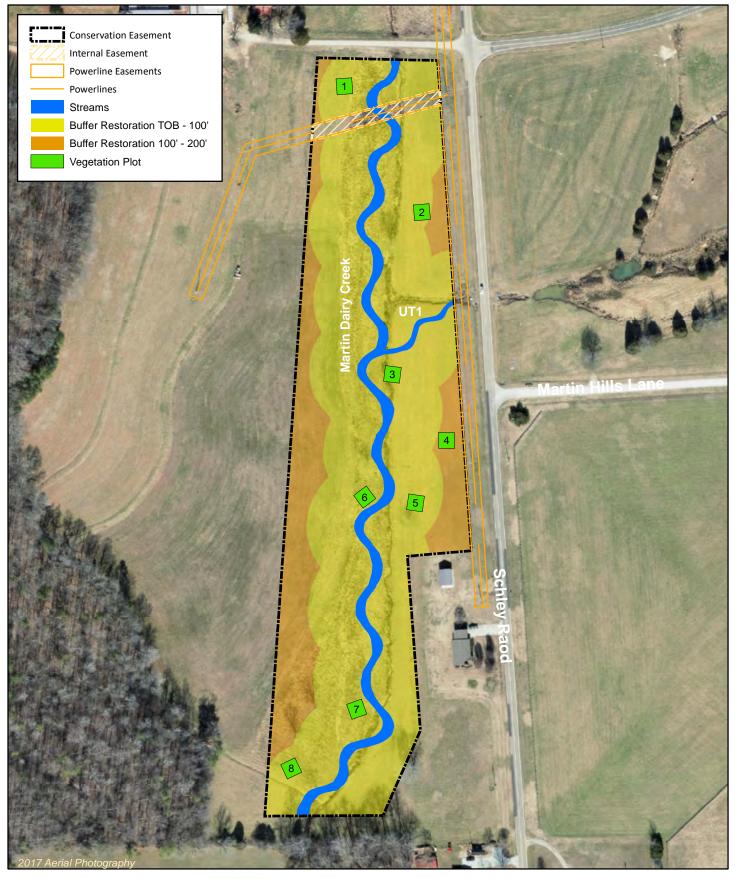
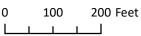

Common Name	Scientific Name	Wetland Indicator Status	
Red Maple	Acer rubrum	FAC	
Water Hickory	Carya aquatica	OBL	
Sugarberry	Celtis laevigata	FACW	
Sweet Pepperbush	Clethra alnifolia	FACW	
Swamp Titi	Cyrilla racemiflora	FACW	
Persimmon	Diospyros virginiana	FAC	
Water Ash	Fraxinus caroliniana	OBL	
Deciduous Holly	llex decidua	FACW-	
Virginia Sweetspire	ltea virginica	FACW+	
Eastern Red Cedar	Juniperus virginiana	FACU-	
Sweetgum	Liquidambar styraciflua	FAC+	
Yellow Poplar	Liriodendron tulipifera	FAC	
Water Tupelo	Nyssa aquatica	OBL	
Blackgum	Nyssa sylvatica	FAC	
Loblolly Pine	Pinus taeda	FAC	
American Sycamore	Platanus occidentalis	FACW-	
Willow Oak	Quercus phellos	FACW-	
Red Oak	Quercus rubra	FACU	
Shumard Oak	Quercus shumardii	FACW-	
Black Willow	Salix nigra	OBL	

Table 6. Planted Tree Species

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018


Common Name	Scientific Name	Number Planted	% of Total
River Birch	Betula nigra	926	16%
Eastern Redbud	Cercis canadensis	58	1%
Flowering Dogwood	Comus florida	58	1%
Green Ash	Fraxinus pennsylvanica	1,042	18%
Tulip Poplar	Liriodendron tulipifera	926	16%
Sycamore	Platanus occidentalis	1,274	22%
Pin Oak	Quercus palustris	811	14%
Willow Oak	Quercus phellos	695	12%
Total		5,790	100%

APPENDIX 2. Visual Assessment Data

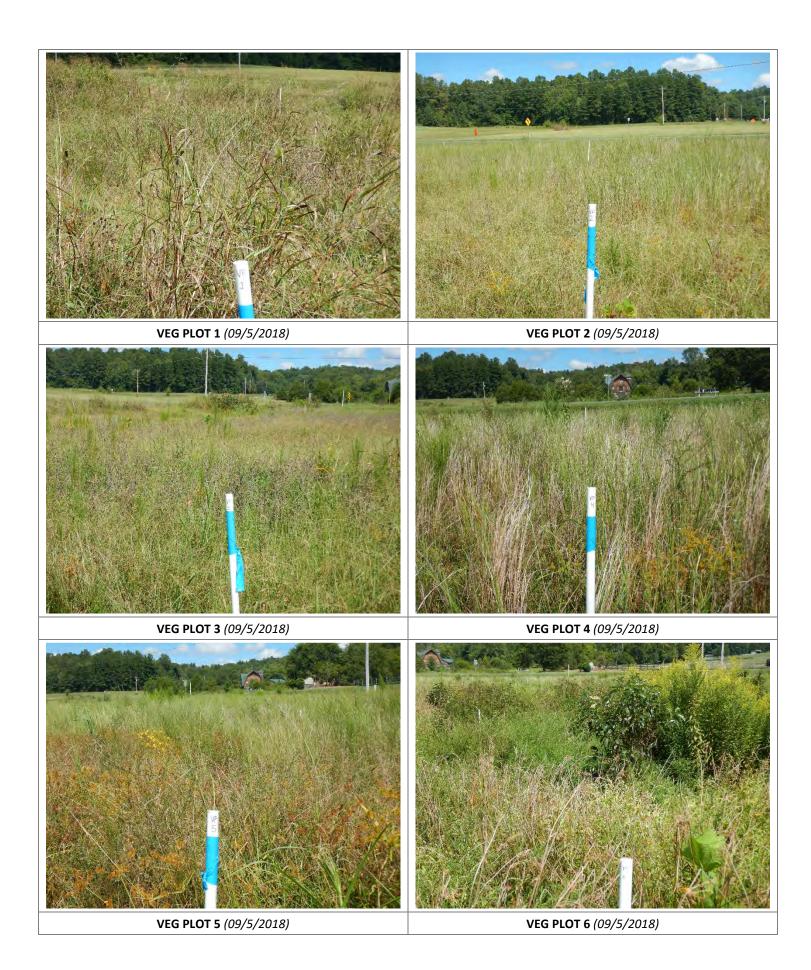
ψ

Figure 4. Monitoring Plan View Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

Orange County, NC

Table 7. Vegetation Condition Assessment Table

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018


Planted Acreage	10.139				
Vegetation Category	Definitions	Mapping Threshold (Ac)	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material	0.1	0	0	0%
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1	0	0	0%
		Total	0	0	0%
Areas of Poor Growth Rates or Vigor	0.25 Ac	0	0	0%	
	0	0.0	0%		

Easement Acreage

11.155

Vegetation Category	Definitions	Mapping Threshold (SF)	Number of Polygons	Combined Acreage	% of Easement Acreage
Invasive Areas of Concern	1,000	0	0	0%	
sement Encroachment Areas Areas of points (if too small to render as polygons at map scale).		none	0	0	0%

VEGETATION PLOT PHOTOGRAPHS

APPENDIX 3. Vegetation Plot Data

Table 8. Vegetation Plot Criteria Attainment TableMartin Dairy Dairy Mitigation Site

DMS Project No. 97087 Monitoring Year 1 - 2018

Plot	Met Success Criteria	Tract Mean
1	Y	
2	Y	
3	Y	
4 5	Y	100%
	Y	100%
6	Y	
7	Y	
8	Y	

Table 9 CVS Vegetation Tables - Metadata

Martin Dairy Buffer Mitigation Project DMS Project No.97087 Monitoring Year 1 - 2018

Device and	Taska Kina
Report Prepared By	Tasha King
Date Prepared	9/25/2018 10:56
Database Name	Martin Dairy- cvs-v2.5.0 MY1.mdb
Database Location	F:\Projects\005-02158 Martin Dairy\Monitoring\Monitoring Year 1\Mitigation\Vegetation Assessment
Computer Name	CAROLYN-PC
File Size	51679232
DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT	
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Project Planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Project Total Stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
ALL Stems by Plot and Spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	97087
Project Name	Martin Dairy
Description	Stream Restoration Project
Sampled Plots	8

Table 10. Planted and Total Stem Counts

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 Monitoring Year 1 - 2018

			Current Plot Data (MY1 2018)														
			097087-01-0001 097087-01-0002					0970	87-01-0	0003	097087-01-0004			097087-01-0005			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т
Betula nigra	River Birch	Tree	1	1	1	3	3	3	3	3	3	1	1	1	3	3	3
Cephalanthus occidentalis	Buttonbush	Shrub Tree															
Cercis canadensis	Redbud	Shrub Tree															
Cornus florida	Flowering Dogwood	Shrub Tree													1	1	1
Fraxinus pennsylvanica	Green Ash	Tree	3	3	3	3	3	4	2	2	2	3	3	3	1	1	1
Liquidambar styraciflua	Sweet Gum	Tree												2			
Liriodendron tulipifera	Tulip Poplar	Tree	3	3	3				1	1	1	1	1	1			
Platanus occidentalis	Sycamore	Tree	2	2	2	2	2	2	2	2	2	2	2	2	4	4	4
Quercus palustris	Pin Oak	Tree				2	2	2	5	5	5	3	3	3	1	1	1
Quercus phellos	Willow Oak	Tree	4	4	4	2	2	2	1	1	1	2	2	2	2	2	2
Ulmus	Elm	Tree															
		Stem count	13	13	13	12	12	13	14	14	14	12	12	14	12	12	12
size (ares)			1		1			1			1			1			
		size (ACRES)		0.02			0.02			0.02			0.02			0.02	
		Species count	5	5	5	5	5	5	6	6	6	6	6	7	6	6	6
		Stems per ACRE	526	526	526	486	486	526	567	567	567	486	486	567	486	486	486

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

Table 10. Planted and Total Stem Counts

Martin Dairy Buffer Mitigation Site DMS Project No. 97087 **Monitoring Year 1 - 2018**

			Current Plot Data (MY1 2018)									Annual Means						
			0970	097087-01-0006 097087-01-0007				0007	097087-01-0008			MY1 (2018)			MY0 (2018)			
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all	Т	PnoLS	P-all	Т	
Betula nigra	River Birch	Tree	2	2	2	1	1	1	2	2	2	16	16	16	17	17	17	
Cephalanthus occidentalis	Buttonbush	Shrub Tree			8									8				
Cercis canadensis	Redbud	Shrub Tree							1	1	1	1	1	1	3	3	3	
Cornus florida	Flowering Dogwood	Shrub Tree	1	1	1							2	2	2	2	2	2	
Fraxinus pennsylvanica	Green Ash	Tree	1	1	1	1	1	2	3	3	13	17	17	29	18	18	18	
Liquidambar styraciflua	Sweet Gum	Tree												2				
Liriodendron tulipifera	Tulip Poplar	Tree				1	1	1	1	1	1	7	7	7	19	19	19	
Platanus occidentalis	Sycamore	Tree	4	4	4	5	5	5	3	3	4	24	24	25	25	25	25	
Quercus palustris	Pin Oak	Tree	1	1	1	2	2	2	2	2	2	16	16	16	20	20	20	
Quercus phellos	Willow Oak	Tree	1	1	1	1	1	1	1	1	1	14	14	14	14	14	14	
Ulmus	Elm	Tree						1						1				
		Stem count	10	10	18	11	11	13	13	13	24	97	97	121	118	118	118	
		size (ares)		1 1 1			8			8								
		size (ACRES)		0.02			0.02			0.02			0.20			0.20		
		Species count	6	6	7	6	6	7	7	7	7	8	8	11	8	8	8	
		Stems per ACRE	405	405	728	445	445	526	526	526	971	491	491	612	597	597	597	

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes

T: Total Stems

APPENDIX 4. Overview Photos

